共查询到19条相似文献,搜索用时 93 毫秒
1.
采用PCR技术从拟南芥中克隆了SCBP60g基因的启动子,并与GUS报告基因融合构建重组表达载体,转化野生型拟南芥,对获得的转基因株系进行GUS组织染色,从基因调控水平上探讨其在功能方面的差异。结果显示:SCBP60g基因的启动子能指导GUS报告基因在拟南芥的根、茎、叶和花中表达,并且在这些部位的维管束表达较强。这种表达方式与LCBP60g基因的启动子指导的GUS基因组织化学染色有差异,表明这个启动子的表达调控具有一定的特异性。 相似文献
2.
用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法 总被引:5,自引:0,他引:5
将rd29A基因的启动子与绿色荧光蛋白基因(GFP)融合在一起,构建成植物表达载体,并以CaMV35S启动子驱动的GFP基因的植物表达载体为对照,用基因枪介导法转化置于4种类型培养基上的洋葱表皮细胞.对其进行不同温度下的培养,16 h后观察GFP基因瞬时表达水平的结果表明,rd29A启动子对高盐和脱水逆境的响应较温度显著,特别是在含PEG6000的培养基上,细胞无破损,绿色荧光强烈,适合于GFP的瞬时表达.而高盐由于易导致细胞出现离子毒害,不宜作为GFP瞬时表达的培养基. 相似文献
3.
4.
小麦醇溶蛋白盒结合因子基因启动子序列 总被引:2,自引:0,他引:2
1 Source Thesequencewasdeterminedfromare versePCRproduct,whichwasligatedtopMD1 8 Tvector(TaKaRaBiotechnologyCo .) ,fromnucleargenomicD 相似文献
5.
PR1是拟南芥 (Arabidopsis thaliana L.) 系统获得抗性的一个标志基因。利用PCR技术,从拟南芥中扩增并克隆了PR1基因的启动子片段。将该启动子片段与GUS报告基因拼接,构建成含有PR1-GUS融合基因的重组表达质粒。经根癌农杆菌介导转化,得到了转基因的拟南芥植株。用已知的系统获得抗性激活剂处理转基因植物,检测到GUS活性。因此,这一转基因体系可以作为一种简便、灵敏的实验体系以筛选激活植物系统获得抗性的化合物。 相似文献
6.
PR1是拟南芥(Arabidopsisis thaliana L.)系统获得抗性的一个标志基因.利用PCR技术,从拟南芥中扩增并克隆了PR1基因的启动子片段.将该启动子片段与GUS报告基因拼接,构建成含有PR1-GUS融合基因的重组表达质粒.经根癌农杆菌介导转化,得到了转基因的拟南芥植株.用已知的系统获得抗性激活剂处理转基因植物,检测到GUS活性.因此,这一转基因体系可以作为一种简便、灵敏的实验体系以筛选激活植物系统获得抗性的化合物. 相似文献
7.
利用植物防御基因中的病原诱导响应元件和最小35S启动子(-62~+1),人工合成了启动子SAP,并以GUS基因为报告基因,在转基因拟南芥中分析了合成启动子的表达特性.通过对转基因拟南芥GUS组织染色的分析表明:SAR启动子在子叶、毛刺、根茎交接处和根系中优势表达,在老叶中的表达量高于幼叶,说明SAR启动子具有组织和发育表达特异性. 相似文献
8.
拟南芥γ-生育酚甲基转移酶(γ-TMT)启动子的分离及表达特性分析 总被引:2,自引:0,他引:2
维生素E是一类人体所必需的脂溶性的维生素,具有重要的生理功能。γ-生育酚甲基转移酶(γ-TMT)是维生素E生物合成途径中的关键酶之一,催化γ、δ-生育酚甲基化,生成α、β-生育酚。从拟南芥中分离了γ-生育酚甲基转移酶基因1552bp的启动子序列,构建了含有该启动子和GUS报告基因的植物表达载体,通过农杆菌介导转化拟南芥,获得了转基因植株。GUS组织化学染色结果表明,在γ-TMT启动子的驱动下,报告基因GUS在拟南芥的叶、茎以及花均有表达,且在茎尖、雄蕊和幼叶中表达最强,而在根、种子和种荚中则没有检测到GUS基因的表达,表明γ-TMT基因可能仅在拟南芥某些组织中特异性高表达。 相似文献
9.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础. 相似文献
10.
11.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。 相似文献
12.
亚硫酸盐氧化酶(SO)作为目前发现的钼酶家族成员之一,在哺乳动物硫化物的脱毒、嘌呤代谢等过程中起着非常重要的作用。然而,很少有关于高等植物SO的表达和调控机制的研究报道。本研究中,我们用半定量RT-PCR和组织化学方法对拟南芥中SO基因AtSO的表达调控进行了初步研究。结果表明,AtSO在拟南芥的地上部分如茎、叶、花和未成熟荚果中有较高的表达水平,而在根部表达水平较低。在对分离的该基因上游1562-bp的启动子区域进行生物信息学分析时,鉴定出一些可能的调控元件如光调控元件(LRE)。转基因植株中AtSO启动子驱动下的GUS基因(uidA)表达结果表明:AtSO的表达主要在植物的地上组织,表达具有光依赖性,且表达水平受亚硫酸盐的诱导增高。这一结果对进一步研究SO在植物对光周期和亚硫酸盐胁迫应答反应中的作用提供线索。 相似文献
13.
Identification and Biochemical Characterization of Molybdenum Cofactor-binding Proteins from Arabidopsis thaliana 总被引:1,自引:0,他引:1
Tobias Kruse Christian Gehl Mirco Geisler Markus Lehrke Phillip Ringel Stephan Hallier Robert H?nsch Ralf R. Mendel 《The Journal of biological chemistry》2010,285(9):6623-6635
The molybdenum cofactor (Moco) forms part of the catalytic center in all eukaryotic molybdenum enzymes and is synthesized in a highly conserved pathway. Among eukaryotes, very little is known about the processes taking place subsequent to Moco biosynthesis, i.e. Moco transfer, allocation, and insertion into molybdenum enzymes. In the model plant Arabidopsis thaliana, we identified a novel protein family consisting of nine members that after recombinant expression are able to bind Moco with KD values in the low micromolar range and are therefore named Moco-binding proteins (MoBP). For two of the nine proteins atomic structures are available in the Protein Data Bank. Surprisingly, both crystal structures lack electron density for the C terminus, which may indicate a high flexibility of this part of the protein. C-terminal truncated MoBPs showed significantly decreased Moco binding stoichiometries. Experiments where the MoBP C termini were exchanged among MoBPs converted a weak Moco-binding MoBP into a strong binding MoBP, thus indicating that the MoBP C terminus, which is encoded by a separate exon, is involved in Moco binding. MoBPs were able to enhance Moco transfer to apo-nitrate reductase in the Moco-free Neurospora crassa mutant nit-1. Furthermore, we show that the MoBPs are localized in the cytosol and undergo protein-protein contact with both the Moco donor protein Cnx1 and the Moco acceptor protein nitrate reductase under in vivo conditions, thus indicating for the MoBPs a function in Arabidopsis cellular Moco distribution. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(10):2292-2296
An important role of protein ADP-ribosylation in bacterial morphogenesis has been proposed (J. Bacteriol. 178, 3785-3790; 178, 4935-4941). To clarify the detail of ADP-ribosylation, we identified a new kind of target protein for ADP-ribosylation in Streptomyces coelicolor A3(2) grown to the late growth phase. All four proteins (MalE, BldKB, a periplasmic protein for binding branched-chain amino-acids, and a periplasmic solute binding protein) were functionally similar and participated in the regulation of transport of metabolites or nutrients through the membrane. ADP-ribosylation was likely to occur on a cysteine residue, because the modification group was removed by mercuric chloride treatment. The modification site may be the site of lipoprotein modification necessary for protein export. This report is the first suggesting that certain proteins involved in membrane transport can be ADP-ribosylated. 相似文献
15.
16.
Short-Term Boron Deprivation Induces Increased Levels of Cytoskeletal Proteins in Arabidopsis Roots 总被引:1,自引:0,他引:1
Q. Yu R. Wingender M. Schulz F. Baluka H. E. Goldbach 《Plant biology (Stuttgart, Germany)》2001,3(4):335-340
Abstract: Although boron is known to be an essential element for the growth of all higher plants, the links between primary responses to boron deprivation and the expression of visual symptoms are yet unknown. Western blots with anti-actin and anti-tubulin antibodies revealed an increase of both proteins upon 20 - 40 min of boron deprivation in roots of hydroponically grown Arabidopsis thaliana. Moreover, actin depolymerizing factor and myosin VIII showed a less pronounced but similiar response to boron deficiency. In contrast, no increase in higher molecular mass ubiquitin was observed, indicating an absence of intensive protein degradation during the experimental time span. This is the first report of cytoskeletal responses of plants to short-term boron removal. Rapid elevation of cytoskeletal proteins after boron deprivation is discussed in relation to the cell wall-plasma membrane-cytoskeleton continuum. 相似文献
17.
Filatov V Dowdle J Smirnoff N Ford-Lloyd B Newbury HJ Macnair MR 《The New phytologist》2007,174(3):580-590
The mechanisms of metal hyperaccumulation are still not understood, so we conducted a quantitative trait locus (QTL) analysis of zinc (Zn) hyperaccumulation in Arabidopsis halleri, in a cross between this and its sister species, A. petraea, in order to determine the number and approximate location of the genomic regions significantly contributing to this adaptation. An F2 cross between the two species was made, and the leaf Zn concentration of 92 individuals was measured at both low (10 microm) and high (100 microm) Zn concentrations. Twenty-five markers were established that were distributed on all of the eight chromosomes. Mapping of the markers established that they were essentially collinear with previous studies. QTLs exceeding a logarithm to the base 10 of the odds (LOD) value of 3 were found on chromosomes 4 (low Zn), 6 (high Zn) and 7 (both high and low Zn). Evidence for a QTL on chromosome 3 (low Zn) was also found. This analysis validates a previously used method of QTL analysis, based on microarray analysis of segregating families. Genes that have altered during the evolution of this character should also be QTL: this analysis calls into question a number of candidate genes from consideration as such primary genes because they do not appear to be associated with QTLs. 相似文献
18.
Lisec J Meyer RC Steinfath M Redestig H Becher M Witucka-Wall H Fiehn O Törjék O Selbig J Altmann T Willmitzer L 《The Plant journal : for cell and molecular biology》2008,53(6):960-972
Plant growth and development are tightly linked to primary metabolism and are subject to natural variation. In order to obtain an insight into the genetic factors controlling biomass and primary metabolism and to determine their relationships, two Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 introgression lines (IL), derived from accessions Col-0 and C24] were analyzed with respect to biomass and metabolic composition using a mass spectrometry-based metabolic profiling approach. Six and 157 quantitative trait loci (QTL) were identified for biomass and metabolic content, respectively. Two biomass QTL coincide with significantly more metabolic QTL (mQTL) than statistically expected, supporting the notion that the metabolic profile and biomass accumulation of a plant are linked. On the same basis, three out the six biomass QTL can be simulated purely on the basis of metabolic composition. QTL based on analysis of the introgression lines were in substantial agreement with the RIL-based results: five of six biomass QTL and 55% of the mQTL found in the RIL population were also found in the IL population at a significance level of P ≤ 0.05, with >80% agreement on the allele effects. Some of the differences could be attributed to epistatic interactions. Depending on the search conditions, metabolic pathway-derived candidate genes were found for 24–67% of all tested mQTL in the database AraCyc 3.5. This dataset thus provides a comprehensive basis for the detection of functionally relevant variation in known genes with metabolic function and for identification of genes with hitherto unknown roles in the control of metabolism. 相似文献
19.
Debarati Basu Yan Liang Xiao Liu Klaus Himmeldirk Ahmed Faik Marcia Kieliszewski Michael Held Allan M. Showalter 《The Journal of biological chemistry》2013,288(14):10132-10143
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [14C]Gal from UDP-[14C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [14C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [14C]Gal-(AO)7 product released 14C-radiolabel as Gal only. Base hydrolysis of the [14C]Gal-(AO)7 product released a 14C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg2+ or Mn2+ for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function. 相似文献