首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Numerous studies reported that inorganic nitrogen (N) deposition strongly affected forest ecosystems. However, organic N is also an important component of atmospheric N deposition. The influence of organic N deposition on soil microbial biomass and extracellular enzymatic activities (EEA) in subtropical forests remains unclear. Coniferous forest (CF) and broad-leaved forest (BF) were chosen from the Zijin Mountain in China. Five forms of organic N (urea, glycine, serine, nonylamine, and a mixture of all four) were used to fertilize the soils in CF and BF every month for 1 year. Soil samples were collected every 2 months. Subsequently, soil microbial biomass and EEA were assayed. Results showed that the microbial biomass and EEA of soils fertilized with urea and amino acids increased significantly, whereas those fertilized with nonylamine and mixed N decreased significantly. Urea and amino acid fertilizations had a more positive influence on EEA of BF than on those of CF. Nonylamine fertilization had a more negative influence on EEA of CF than on those of BF. Organic N fertilization shifted soil microbial biomass away from the excretion of N-degrading enzymes and toward the excretion of C-degrading enzymes. These results suggest that organic N type is an important factor that affects soil microbial biomass, EEA, and their relationship. Organic N deposition may seriously affect soil C and N cycling, as well as carbon dioxide releasing from the soils by influencing microbial activities and biomass. This study thereby provides evidence that soil microorganisms have strong feedback to different forms of organic N deposition.  相似文献   

2.
The fate of soil organic carbon (SOC) is determined, in part, by complex interactions between the quality of plant litter inputs, nutrient availability, and the microbial communities that control decomposition rates. This study explores these interactions in a mesic grassland where C and nitrogen (N) availability and plant litter quality have been manipulated using both fertilization and haying for 7 years. We measured a suite of soil parameters including inorganic N, extractable organic C and N (EOC and EON), soil moisture, extracellular enzyme activity (EEA), and the isotopic composition of C and N in the microbial biomass and substrate sources. We use these data to determine how the activity of microbial decomposers was influenced by varying levels of substrate C and N quality and quantity and to explore potential mechanisms explaining the fate of enhanced plant biomass inputs with fertilization. Oxidative EEA targeting relatively recalcitrant C pools was not affected by fertilization. EEA linked to the breakdown of relatively labile C rich substrates exhibited no relationship with inorganic N availability but was significantly greater with fertilization and associated increases in substrate quality. These increases in EEA were not related to an increase in microbial biomass C. The ratio of hydrolytic C:N acquisition enzymes and δ13C and δ15N values of microbial biomass relative to bulk soil C and N, or EOC and EON suggest that microbial communities in fertilized plots were relatively C limited, a feature likely driving enhanced microbial efforts to acquire C from labile sources. These data suggest that in mesic grasslands, enhancements in biomass inputs and quality with fertilization can prompt an increase in EEA within the mineral soil profile with no significant increases in microbial biomass. Our work helps elucidate the microbially mediated fate of enhanced biomass inputs that are greater in magnitude than the associated increases in mineral soil organic matter.  相似文献   

3.
Chinese hickory (Carya cathayensis Sarg.) is a popular nut tree in China, but there is little information about the influences of fertilization on soil CO2 efflux and soil microbial biomass. This study evaluated the short-term effects of different fertilizer applications on soil CO2 efflux and soil microbial biomass in Chinese hickory stands. Four fertilizer treatments were established: control (CK, no fertilizer), inorganic fertilizer (IF), organic fertilizer (OF), and equal parts organic and inorganic N fertilizers (OIF). A field experiment was conducted to measure soil CO2 effluxes using closed chamber and gas chromatography techniques. Regardless of the fertilization practices, soil CO2 effluxes of all the treatments showed a similar temporal pattern, with the highest value in summer and the lowest in winter. The mean annual soil CO2 efflux in the IF treatment was significantly higher than that in the CK, OIF, and OF treatments. There was no significant difference in soil CO2 efflux between the OIF, OF, and CK treatments. Soil CO2 effluxes were significantly affected by soil temperature. Soil dissolved organic carbon (DOC) was positively correlated with soil CO2 efflux only in the CK treatment. Regression analysis, including soil temperature, moisture, and DOC, showed that soil temperature was the primary factor influencing soil CO2 effluxes. Both OF and OIF treatments increased concentrations of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but decreased the ratio of MBC:MBN. These results reveal that applying organic fertilizer, either alone or combined with inorganic fertilizer, may be the optimal strategy for mitigating soil CO2 emission and improving soil quality in Chinese hickory stands.  相似文献   

4.
In the Darmstadt long-term fertilization trial, the application of composted cattle farmyard manure without (CM) and with (CMBD) biodynamic preparations was compared to mineral fertilization with straw return (MIN). The present study was conducted to investigate the effects of spatial variability, especially of soil pH in these three treatments, on soil organic matter and soil microbial biomass (C, N, P, S), activity (basal CO2 production and O2 consumption), and fungal colonization (ergosterol). Soil pH was significantly lower in the MIN treatments than in the organic fertilizer treatments. In the MIN treatments, the contents of soil organic C and total N were also significantly lower (13% and 16%, respectively) than those of the organic fertilizer treatments. In addition, the total S content increased significantly in the order MIN < CM < CMBD. The microbial biomass C content was significantly lower (9%) in the MIN treatments than in the organic fertilizer treatments. Microbial biomass N and biomass P followed microbial biomass C, with a mean C/N ratio of 7.9 and a mean C/P ratio of 23. Neither the microbial biomass C to soil organic C ratio, the metabolic quotient qCO2, nor the respiratory quotient (mol CO2/mol O2) revealed any clear differences between the MIN and organic fertilizer treatments. The mean microbial biomass S content was 50% and the mean ergosterol content was 40% higher in the MIN treatments compared to the organic fertilizer treatments. The increased presence of saprotrophic fungi in the MIN treatments was indicated by significantly increased ratios of ergosterol-to-microbial biomass C and the microbial biomass C/S ratio. Our results showed that complex interactions between the effects of fertilizer treatments and natural heterogeneity of soil pH existed for the majority of microbial biomass and activity indices.  相似文献   

5.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

6.
Anthropogenic nitrogen (N) deposition is an expanding problem that affects the functioning and composition of forest ecosystems, particularly the decomposition of forest litters. Legumes play an important role in the nitrogen cycle of forest ecosystems. Two litter types were chosen from Zijin Mountain in China: Robinia pseudoacacia leaves from a leguminous forest (LF) and Liquidambar formosana leaves from a non-leguminous forest (NF). The litter samples were mixed into original forest soils and incubated in microcosms. Then, they were treated by five forms of N addition: NH4 +, NO3 ?, urea, glycine, and a mixture of all four. During a 6-month incubation period, litter mass losses, soil microbial biomass, soil pH, and enzyme activities were investigated. Results showed that mixed N and NO3 ?-N addition significantly accelerated the litter decomposition rates of LF leaves, while mixed N, glycine-N, and urea-N addition significantly accelerated the litter decomposition rates of NF leaves. Litter decomposition rates and soil enzyme activities under mixed N addition were higher than those under single form of N additions in the two forest types. Nitrogen addition had no significant effects on soil pH and soil microbial biomass. The results indicate that nitrogen addition may alter microbial allocation to extracellular enzyme production without affecting soil microbial biomass, and then affected litter decomposition process. The results further reveal that mixed N is a more important factor in controlling litter decomposition process than single form of N, and may seriously affect soil N cycle and the release of carbon stored belowground.  相似文献   

7.
Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total nitrogen were assessed. Moreover, in situ and potential nitrogen mineralization, as well as enzymatic activities, were determined as measures of nutrient cycling. The aim of this study was to evaluate the effects of elevated [CO2] and fertilization on: (1) N mineralization and immobilization processes; (2) soil nutrient availability; and (3) soil enzyme activity, as an indication of microbial and plant nutrient acquisition activity. Independent of any treatment, total soil N increased by 23% in the plantation after 6 years due to afforestation. Nitrification was the main process influencing inorganic N availability in soil, while ammonification being null or even negative. Ammonium was mostly affected by microbial immobilization and positively related to total N and microbial biomass N. Elevated [CO2] negatively influenced nitrification under unfertilised treatment by 44% and consequently nitrate availability by 30% on average. Microbial N immobilization was stimulated by [CO2] enrichment and probably enhanced the transformation of large amounts of N into organic forms less accessible to plants. The significant enhancement of enzyme activities under elevated [CO2] reflected an increase in nutrient acquisition activity in the soil, as well as an increase of fungal population. Nitrogen fertilization did not influence N availability and cycling, but acted as a negative feed-back on phosphorus availability under elevated CO2.  相似文献   

8.
The impacts of crop rotation and inorganic nitrogen fertilization on soil microbial biomass C (SMBC) and N (SMBN) and water-soluble organic C (WSOC) were studied in a Guinea savanna Alfisol of Nigeria. In 2001, fields of grain legumes (soybean and cowpea), herbaceous legume (Centrosema pascuorum) and a natural fallow were established. In 2002, maize was planted with N fertilizer rates of 0, 20, 40 and 60 kg N ha−1 in a split-plot arrangement fitted to a randomized complete block design with legumes and fallow as main plots and N fertilizer levels as subplots. Surface soil samples were taken at 4 weeks after planting and tasselling stage of the maize. Inorganic N fertilization had no significant (P>0.05) effect on SMBC, SMBN and WSOC, while crop rotation significantly (P<0.0001) affected both SMBC and WSOC. These results demonstrate that crop rotation do not necessarily influence the gross soil microbial biomass, but may affect physiologically distinct subcomponent of the microbial biomass. The soils under the various rotations had a predominance of fungi community as indicated by their wide biomass C/N ratio ranging from 9.2 to 20.9 suggesting fungi to be mainly responsible for decomposition in these soils. Soil microbial biomass and WSOC showed significant (P<0.05) correlation with both soil pH and organic carbon but no relationship with total N. Based on these results, it appears that the soil pH and organic carbon determined the flux of the soil microbial biomass and amount of WSOC in these soils.  相似文献   

9.
The objectives of this study were to explore the effects of long-term and continued application of fertilizers and manures on microbial biomass, soil biological activity and their seasonal variations in surface and subsurface soils in relation to soil fertility. For this, soils were sampled in spring, summer and autumn from Shenyang Long-term Experimental Station, northeastern China. The results showed that soil total nitrogen (N), organic carbon (C), basal respiration, microbial biomass and enzymatic activity increased in manure-amended surface soils, but decreased with soil depth. Long-term application of inorganic fertilizers significantly decreased soil pH value, sucrase activity and microbial biomass C, but increased soil metabolic quotient (qCO2). However, no significant effect of inorganic fertilizers on soil total N, urease activity and microbial biomass N was observed in comparison with CK0 (neither tillage nor fertilization) and CK (no fertilizers). There was no significant difference between CK0 and CK in soil total N, organic C and microbial activity in surface soil layer (0–20 cm), but these parameters in subsurface soil layer (20–40 cm) were higher in CK than in CK0. Moreover, seasonal changes were observed in terms of soil nutrient contents, enzymatic activity, microbial biomass and soil respiration. There were significant correlations between soil microbial biomass C and N, between organic C and sucrase activity and between total N and urease activity, respectively. It is recommended that combined use of organic manure with inorganic fertilizers should be considered to maintain higher microbial biomass, soil biological activity and soil fertility. Considering considerably high nutrients reserve and microbial activity in subsurface layers of soil and wind-erosion-caused nutrient loss in spring in north China, we also propose that low tillage should be considered to make use of nutrients in soils.  相似文献   

10.
For the first time in an arctic long-term warming and fertilization experiment, the short-term (days) and longer-term (month and year) nitrogen (N) uptake and allocation in plants, microbes, and soil pools were studied, with 15N-labeling of an organic nitrogen form, glycine. The long-term warming and fertilization had no marked effect on soil inorganic N content, but both dissolved organic N (DON) and plant biomass did increase after fertilization. Soil microbes initially immobilized most of the added 15N, but in the following months, they lost two-thirds, while label concentration in plants increased. After a year, however, the 15N recovered in microbes was still 10-fold higher than that in the plant biomass, showing the high importance of soil microbes in nutrient retention in arctic ecosystems, irrespective of the impact of long-term warming or fertilization. The effects of the treatments on the uptake of label by deciduous shrubs and evergreens paralleled that of their N pool sizes, suggesting that their N uptake potential was unaffected by long-term warming and fertilizer addition. Mosses and herbs had high uptake potential but in fertilized plots they took up less 15N, that is, they were N saturated. The fraction of 15N in microbes tended to decrease after fertilization, but this was an effect of higher N pool dilution after 1 month and a year, and not due to lower initial uptake. Although the concentration of soil inorganic N did not change after fertilization, both increased DON and the results of the 15N label addition showed that the N availability in the ecosystem had increased. By contrast, warming had little effect on soil N pools and microbial 15N uptake, and, hence, had no detectable effects on 15N accumulation.  相似文献   

11.
The sudangrass (Sorghum sudanense) and ryegrass (Lolium multiflorum L.) rotation is an intensive and new cropping system in Central China. Nutrient management practices in this rotation system may influence soil fertility, the important aspects of which are soil biological properties and quality. As sensitive soil biological properties and quality indicators, soil microbial community activity, microbial biomass, enzyme activities, soil organic matter (SOM) and total N resulting from different fertilization regimes in this rotation system were studied through a four-year field experiment from April 2005 to May 2009. Treatments included control (CK), fertilizer phosphorus and potassium (PK), fertilizer nitrogen and potassium (NK), fertilizer nitrogen and phosphorus (NP) and a fertilizer nitrogen, phosphorus and potassium combination (NPK). Soil microbial community activities in the NK, NP and NPK treatments were significantly lower than those in the CK and PK treatments after the sudangrass and ryegrass trial. The highest microbial biomass C, microbial biomass N, SOM, total N, sucrase and urease activities were found in the NPK treatment, and these soil quality indicators were significantly higher in the NK, NP and NPK treatments than in the PK and CK treatments. Soil microbial biomass and enzyme activities were positively associated with SOM in the sudangrass and ryegrass rotation system, indicating that fertilization regimes, especially N application, reduced microbial community activity in the soil. Proper fertilization regimes will increase microbial biomass, enzyme activity and SOM and improve soil fertility.  相似文献   

12.
长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响   总被引:13,自引:1,他引:12  
对中国科学院红壤生态实验站长期定位试验中不同施肥处理红壤水稻土磷脂脂肪酸(PLFA)特性及酶活性进行了分析.结果表明:不同施肥处理的土壤酶活性、养分、微生物生物量及微生物群落多样性差异较大;施肥处理增加了PLFA的种类和微生物量;施肥土壤的真菌PLFA量大于不施肥土壤,细菌PLFA量小于不施肥土壤,说明真菌较细菌更能适应养分贫瘠的条件.NPK平衡施肥和施有机肥处理的PLFA总量均高于施无机氮肥和未施肥处理,两者分别比未施肥处理高222%和79%,表明NPK平衡施肥和施有机肥更有利于作物生长.施肥还可增加土壤酶活性,其中,土壤脲酶和磷酸酶活性可以作为衡量土壤肥力水平的指标.  相似文献   

13.
Soil microbial properties play a key role in belowground ecosystem functioning, but are not well understood in forest ecosystems under nitrogen (N) enrichment. In this study, soil samples from 0–10 cm and 10–20 cm layers were collected from a Dahurian larch (Larix gmelinii Rupr.) plantation in Northeast China after six consecutive years of N addition to examine changes in soil pH, nutrient concentrations, and microbial biomass and activities. Nitrogen addition significantly decreased soil pH and total phosphorus, but had little effect on soil total organic carbon (TOC) and total N (TN) concentrations. The NO 3 ? -N concentrations in the two soil layers under N addition were significantly higher than that in the control, while NH 4 + -N concentrations were not different. After six years of N addition, potential net N mineralization and nitrification rates were dramatically increased. Nitrogen addition decreased microbial biomass C (MBC) and N (MBN), and MBC/TOC and MBN/TN in the 0–10 cm soil layer, but MBC/MBN was increased by 67% in the 0–10 cm soil layer. Soil basal respiration, microbial metabolic quotient (qCO2), and β-glucosidase, urease, acid phosphomonoesterase and nitrate reductase activities in the two soil layers showed little change after six years of N addition. However, soil protease and dehydrogenase activities in the 0–10 cm layer were 41% and 54% lower in the N addition treatment than in the control, respectively. Collectively, our results suggest that in the mid-term N addition leads to a decline in soil quality in larch plantations, and that different soil enzymes show differentiated responses to N addition.  相似文献   

14.
Questions: What are the effects of repeated disturbance and N‐fertilization on plant community structure in a mountain birch forest? What is the role of enhanced nutrient availability in recovery of understorey vegetation after repeated disturbance? How are responses of soil micro‐organisms to disturbance and N‐fertilization reflected in nutrient allocation patterns and recovery of understorey vegetation after disturbance? Location: Subarctic mountain birch forest, Finland. Methods: We conducted a fully factorial experiment with annual treatments of disturbance (two levels) and N‐fertilization (four levels) during 1998–2002. We monitored treatment effects on above‐ground plant biomass, plant community structure and plant and soil nutrient concentrations. Results: Both disturbance and N‐fertilization increased the relative biomass of graminoids. The increase of relative biomass of graminoids in the disturbance treatment was over twice that of the highest N‐fertilization level, and N‐fertilization further increased their relative biomass after disturbance. As repeated disturbance broke the dominance of evergreen dwarf shrubs, it resulted in a situation where deciduous species, graminoids and herbs dominated the plant community. Although relative biomass of deciduous dwarf shrubs declined with N‐fertilization, it did not cause a shift in plant community structure, as evergreen dwarf shrubs remained dominant. Both disturbance and N‐fertilization increased the N concentration in vascular plants, whereas microbial biomass N and C were not affected by the treatments. Concentrations of NH4+, dissolved organic N (DON) and dissolved organic C (DOC) increased in the soil after N‐fertilization, whereas concentrations of NH4+ and DON decreased after disturbance. Conclusions: Disturbances caused by e.g. humans or herbivores contribute more to changes in the understorey vegetation structure than increased levels of N in subarctic vegetation. Fertilization accelerated the recovery potential after repeated disturbance in graminoids. Microbial activities did not limit plant growth.  相似文献   

15.
Topsoil soil organic carbon (SOC) data were collected from long-term Chinese agro-ecosystem experiments presented in 76 reports with measurements over 1977 and 2006. The data set comprised 481 observations (135 rice paddies and 346 dry croplands) of SOC under different fertilization schemes at 70 experimental sites (28 rice paddies and 42 dry croplands). The data set covered 16 dominant soil types found in croplands across 23 provinces of mainland China. The fertilization schemes were grouped into six categories: N (inorganic nitrogen fertilizer only), NP (compound inorganic nitrogen and phosphorus fertilizers), NPK (compound inorganic nitrogen, phosphorus and potassium fertilizers), O (organic fertilizers only), OF (combined inorganic/organic fertilization) and Others (other unbalanced fertilizations such as P only, K only, P plus K and N plus K). Relative change in SOC content was analyzed, and rice paddies and dry croplands soils were compared. There was an overall temporal increase in topsoil SOC content, and relative annual change (RAC, g kg−1 yr−1) ranged −0.14–0.60 (0.13 on average) for dry cropland soils and −0.12–0.70 (0.19 on average) for rice paddies. SOC content increase was higher in rice paddies than in dry croplands. SOC increased across experimental sites, but was higher under organic fertilization and combined organic/inorganic fertilizations than chemical fertilizations. SOC increase was higher under balanced chemical fertilizations with compound N, P and K fertilizers than unbalanced fertilizations such as N only, N plus P, and N plus K. The effects of specific rational fertilizations on SOC increase persisted for 15 years in dry croplands and 20 years in rice paddies, although RAC values decreased generally as the experiment duration increased. Therefore, the extension of rational fertilization in China’s croplands may offer a technical option to enhance C sequestration potential and to sustain long-term crop productivity.  相似文献   

16.
Soil nitrogen (N) is a vital source of nutrients for maintaining soil fertility and crop production. However, the effect of biochar application rate on the mechanism of organic N transformation and the contribution of enzyme mineralization is still unclear. Therefore, we conducted two 5-year field experiments in contrasting soils (Phaeozem and Luvisol) with biochar application rate at 0 t hm−2 (CK, 0), 22.5 t hm−2 (D1, 1%), 67.5 t hm−2 (D2, 3%), and 112.5 t hm−2 (D3, 5%) to investigate the potential effects of biochar application rate on soil organic nitrogen (N) turnover and its linkage to enzymatic mineralization in contrasting soil. The results showed that soil organic carbon (SOC) and microbial biomass nitrogen (MBN) contents, microbial biomass carbon to nitrogen ratio (MBC:MBN) and protease activity are significantly influenced by biochar application rate whereas not by soil type. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) contents, and dehydrogenase activity are significantly changed by soil type whereas not by biochar application rate. Based on the redundancy analysis, we found that organic N fractions are associated with MBN, SOC, and protease in Phaeozem, but related to protease activity in Luvisol. Our findings indicate that organic N turnover is not only related to the bioavailability of N but also requires carbon substrates in Phaeozem, whereas the transformation of organic N in Luvisol is dominated by enzymatic mineralization as the relatively low level of bioavailable N.  相似文献   

17.
Schaeffer SM  Evans RD 《Oecologia》2005,145(3):425-433
Biogeochemical cycles in arid and semi-arid ecosystems depend upon the ability of soil microbes to use pulses of resources. Brief periods of high activity generally occur after precipitation events that provide access to energy and nutrients (carbon and nitrogen) for soil organisms. To better understand pulse-driven dynamics of microbial soil nitrogen (N) cycling in an arid Colorado Plateau ecosystem, we simulated a pulsed addition of labile carbon (C) and N in the field under the canopies of the major plant species in plant interspaces. Soil microbial activity and N cycling responded positively to added C while NH4+–N additions resulted in an accumulation of soil NO3. Increases in microbial activity were reflected in higher rates of respiration and N immobilization with C addition. When both C and N were added to soils, N losses via NH3 volatilization decreased. There was no effect of soil C or N availability on microbial biomass N suggesting that the level of microbial activity (respiration) may be more important than population size (biomass) in controlling short-term dynamics of inorganic and labile organic N. The effects of C and N pulses on soil microbial function and pools of NH4+–N and labile organic N were observed to last only for the duration of the moisture pulse created by treatment addition, while the effect on the NO3–N pool persisted after soils dried to pre-pulse moisture levels. We observed that increases in available C lead to greater ecosystem immobilization and retention of N in soil microbial biomass and also lowered rates of gaseous N loss. With the exception of trace gas N losses, the lack of interaction between available C and N on controlling N dynamics, and the subsequent reduction in plant available N with C addition has implications for the competitive relationships between plants species, plants and microbes, or both.  相似文献   

18.
The mechanistic understanding of warming and nitrogen (N) fertilization, alone or in combination, on microbially mediated decomposition is limited. In this study, soil samples were collected from previously harvested switchgrass (Panicum virgatum L.) plots that had been treated with high N fertilizer (HN: 67 kg N ha?1) and those that had received no N fertilizer (NN) over a 3‐year period. The samples were incubated for 180 days at 15 °C and 20 °C, during which heterotrophic respiration, δ13C of CO2, microbial biomass (MB), specific soil respiration rate (Rs: respiration per unit of microbial biomass), and exoenzyme activities were quantified at 10 different collections time. Employing switchgrass tissues (referred to as litter) with naturally abundant 13C allowed us to partition CO2 respiration derived from soil and amended litter. Cumulative soil respiration increased significantly by 16.4% and 4.2% under warming and N fertilization, respectively. Respiration derived from soil was elevated significantly with warming, while oxidase, the agent for recalcitrant soil substrate decomposition, was not significantly affected by warming. Warming, however, significantly enhanced MB and Rs indicating a decrease in microbial growth efficiency (MGE). On the contrary, respiration derived from amended litter was elevated with N fertilization, which was consistent with the significantly elevated hydrolase. N fertilization, however, had little effect on MB and Rs, suggesting little change in microbial physiology. Temperature and N fertilization showed minimal interactive effects likely due to little differences in soil N availability between NN and HN samples, which is partly attributable to switchgrass biomass N accumulation (equivalent to ~53% of fertilizer N). Overall, the differential individual effects of warming and N fertilization may be driven by physiological adaptation and stimulated exoenzyme kinetics, respectively. The study shed insights on distinct microbial acquisition of different substrates under global temperature increase and N enrichment.  相似文献   

19.
High rates of inorganic nitrogen (N) deposition or internal N turnover increases the risks of N loss from forests with negative effects on stream water quality. We hypothesized that soil fungi may be more important N sinks than bacteria, and thus examined the impact of soil microbial community composition on N leaching from forests. We studied 19 spruce stands to examine relationships between microbial community composition, stem growth, soil-, and lysimeter-collected soil solution characteristics, and N leaching. We used nitrate concentration in the soil solution below the rooting zone as an N leaching index and phospholipid fatty acid (PLFA) analysis for characterisation of microbial communities. Microbial community composition in the organic horizon and soil solution chemistry below the rooting zone was highly correlated. Stands with low concentrations of nitrate (NO3 ?) and aluminium (Al) had higher fungi: bacteria ratio compared with stands with higher concentrations of NO3 ? and Al. Stem growth and fungi: bacteria ratio explained 70 % of the variation in N and Al leaching. We identified three microbial predictors of variation in soil solution chemistry, of which the fungi: bacteria was the strongest. The other two were putative indicators of microbial C limitation, a condition known to stimulate N mineralisation and nitrification.  相似文献   

20.
Nitrogen (N) addition has been well documented to decrease plant biodiversity across various terrestrial ecosystems. However, such generalizations about the impacts of N addition on soil microbial communities are lacking. This study was conducted to examine the impacts of N addition (urea-N fertilizer) on soil microbial communities in a semi-arid temperate steppe in northern China. Soil microbial biomass carbon (C), biomass N (MBN), net N mineralization and nitrification, and bacterial and fungal community level physiological profiles (CLPP) along an N addition gradient (0–64 g N m?2 year?1) were measured. Three years of N addition caused gradual or step increases in soil NH4-N, NO3-N, net N mineralization and nitrification in the early growing season. The reductions in microbial biomass under high N addition levels (32 and 64 g N m?2 year?1) are partly attributed to the deleterious effects of soil pH. An N optimum between 16 and 32 g N m?2 year?1 in microbial biomass and functional diversity exists in the temperate steppe in northern China. Similar N loading thresholds may also occur in other ecosystems, which help to interpret the contrasting observations of microbial responses to N addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号