首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Fluxes of dissolved organic carbon (DOC) and nitrogen (DON) may play an important role for losses of C and N from the soils of forest ecosystems, especially under conditions of high precipitation. We studied DOC and DON fluxes and concentrations in relation to precipitation intensity in a subtropical montane Chamaecyparis obtusa var. formosana forest in Taiwan. Our objective was, to quantify DOC and DON fluxes and to understand the role of high precipitation for DOC and DON export in this ecosystem. From 2005 to 2008 we sampled bulk precipitation, throughfall, forest floor percolates and seepage (60 cm) and analyzed DOC, DON and mineral N concentrations. Average DOC fluxes in the soil were extremely high (962 and 478 kg C ha?1 year?1 in forest floor percolates and seepage, respectively) while DON fluxes were similar to other (sub)tropical ecosystems (16 and 8 kg N ha?1 year?1, respectively). Total N fluxes in the soil were dominated by DON. Dissolved organic C and N concentrations in forest floor percolates were independent of the water flux. No dilution effect was visible. Instead, the pool size of potentially soluble DOC and DON was variable as indicated by different DOC and DON concentrations in forest floor percolates at similar precipitation amounts. Therefore, we hypothesized, that these pools are not likely to be depleted in the long term. The relationship between water fluxes in bulk precipitation and DOC and DON fluxes in forest floor percolates was positive (DOC r = 0.908, DON r = 0.842, respectively, Spearman rank correlation). We concluded, that precipitation is an important driver for DOC and DON losses from this subtropical montane forest and that these DOC losses play an important role in the soil C cycle of this ecosystem. Moreover, we found that the linear relationship between bulk precipitation and DOC and DON fluxes in forest floor percolates of temperate ecosystems does not hold when incorporating additional data on these fluxes from (subtropical) ecosystems.  相似文献   

2.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

3.
Shrub communities have expanded in arctic and alpine tundra during recent decades. Changes in shrub abundance may alter ecosystem carbon (C) sequestration and storage, with potential positive or negative feedback on global C cycling. To assess potential implications of shrub expansion in different alpine plant communities, we compared C fluxes and pools in one Empetrum-dominated heath, one herb- and cryptogam-dominated meadow, and one Salix-shrub community in Central Norway. Over two growing seasons, we measured Gross Ecosystem Photosynthesis, Ecosystem Respiration (ER), and C pools for above-ground vegetation, litter, roots, and soil separated into organic and mineral horizons. Both the meadow and shrub communities had higher rates of C fixation and ER, but the total ecosystem C pool in the meadow was twice that of the shrub community because of more C in the organic soil horizon. Even though the heath community had the lowest rates of C fixation, it stored one and a half times more C than the shrub community. The results indicate that the relatively high above-ground biomass sequestering C during the growing season is not associated with high C storage in shrub-dominated communities. Instead, shrub-dominated areas may be draining the carbon-rich alpine soils because of high rates of decomposition. These processes were not shown by mid-growing season C fluxes, but were reflected by the very different distribution of C pools in the three habitats.  相似文献   

4.
In order to understand the influence of nitrogen (N) deposition on the key processes relevant to the carbon (C) balance in a bamboo plantation, a two-year field experiment involving the simulated deposition of N in a Pleioblastus amarus plantation was conducted in the rainy region of SW China. Four levels of N treatments: control (no N added), low-N (50 kg N ha?1 year?1), medium-N (150 kg N ha?1 year?1), and high-N (300 kg N ha?1 year?1) were set in the present study. The results showed that soil respiration followed a clear seasonal pattern, with the maximum rates in mid-summer and the minimum in late winter. The annual cumulative soil respiration was 585?±?43 g CO2-C m?2 year?1 in the control plots. Simulated N deposition significantly increased the mean annual soil respiration rate, fine root biomass, soil microbial biomass C (MBC), and N concentration in fine roots and fresh leaf litter. Soil respirations exhibited a positive exponential relationship with soil temperature, and a linear relationship with MBC. The net primary production (NPP) ranged from 10.95 to 15.01 Mg C ha?1 year?1 and was higher than the annual soil respiration (5.85 to 7.62 Mg C ha?1 year?1) in all treatments. Simulated N deposition increased the net ecosystem production (NEP), and there was a significant difference between the control and high N treatment NEP, whereas, the difference of NEP among control, low-N, and medium-N was not significant. Results suggest that N controlled the primary production in this bamboo plantation ecosystem. Simulated N deposition increased the C sequestration of the P. amarus plantation ecosystem through increasing the plant C pool, though CO2 emission through soil respiration was also enhanced.  相似文献   

5.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

6.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

7.
Plant productivity in many tropical savannas is phosphorus limited. The biogeochemical cycling of P in these ecosystems, however, has not been well quantified. In the present study, we characterized P stocks and fluxes in a well-preserved small watershed in the Brazilian Cerrado. As the Cerrado is also a fire-dominated ecosystem, we measured the P stocks and fluxes in a cerrado stricto sensu plot with complete exclusion of fire for 26 years (unburned plot) and then tested some predictions about the impacts of fire impacts on P cycling in an experimental plot that was burned three times since 1992 (burned plot). The unburned area is an ecosystem with large soil stocks of total P (1,151 kg ha?1 up to 50 cm depth), but the largest fraction is in an occluded form. Readily extractable P was found up to 3 m soil depth suggesting that deep soil is more important to the P cycle than has been recognized. The P stock in belowground biomass (0?C800 cm) was 9.9 kg ha?1. Decomposition of fine litter released 0.97 kg P ha?1 year?1. Fluxes of P through bulk atmospheric deposition, throughfall and litter leachate were very low (0.008, 0.006 and 0.028 kg ha?1 year?1, respectively) as was stream export (0.001 kg ha?1 year?1). Immobilization of P by microbes during the rainy season seems to be an important mechanism of P conservation in this ecosystem. Fire significantly increased P flux in litter leachate to 0.11 kg ha?1 year?1, and added 1.2 kg ha?1 of P in ash deposition after fire. We found an increase of P concentration in soil solution at 100 cm depth (from 0.03 ??g l?1 in unburned plot to 0.3 ??g l?1 in the burned plot). In surface soils (0?C10 cm) of the burned plot, fire decreased the concentrations of extractable organic-P fractions, but did not significantly increase inorganic-P fractions. The reduction of extractable soil organic P in the burned plot in topsoil and the increase of P in the soil solution at greater depths indicated a reduction of P availability and may increase P fixation in deep soils. Repeated fire events over the long term may result in significant net loss of available forms of phosphorus from this ecosystem.  相似文献   

8.
Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching, mineralization, nitrification). We compared predicted denitrification estimates for a typical corn and soybean agroecosystem on a tile drained Mollisol from five models (DAYCENT, SWAT, EPIC, DRAINMOD-N II and two versions of DNDC, 82a and 82h), after first calibrating each model to crop yields, water flux, and nitrate leaching. Known annual crop yields and daily flux values (water, nitrate-N) for 1993–2006 were provided, along with daily environmental variables (air temperature, precipitation) and soil characteristics. Measured denitrification fluxes were not available. Model output for 1997–2006 was then compared for a range of annual, monthly and daily fluxes. Each model was able to estimate corn and soybean yields accurately, and most did well in estimating riverine water and nitrate-N fluxes (1997–2006 mean measured nitrate-N loss 28 kg N ha?1 year?1, model range 21–28 kg N ha?1 year?1). Monthly patterns in observed riverine nitrate-N flux were generally reflected in model output (r 2 values ranged from 0.51 to 0.76). Nitrogen fluxes that did not have corresponding measurements were quite variable across the models, including 10-year average denitrification estimates, ranging from 3.8 to 21 kg N ha?1 year?1 and substantial variability in simulated soybean N2 fixation, N harvest, and the change in soil organic N pools. DNDC82a and DAYCENT gave comparatively low estimates of total denitrification flux (3.8 and 5.6 kg N ha?1 year?1, respectively) with similar patterns controlled primarily by moisture. DNDC82h predicted similar fluxes until 2003, when estimates were abruptly much greater. SWAT and DRAINMOD predicted larger denitrification fluxes (about 17–18 kg N ha?1 year?1) with monthly values that were similar. EPIC denitrification was intermediate between all models (11 kg N ha?1 year?1). Predicted daily fluxes during a high precipitation year (2002) varied considerably among models regardless of whether the models had comparable annual fluxes for the years. Some models predicted large denitrification fluxes for a few days, whereas others predicted large fluxes persisting for several weeks to months. Modeled denitrification fluxes were controlled mainly by soil moisture status and nitrate available to be denitrified, and the way denitrification in each model responded to moisture status greatly determined the flux. Because denitrification is dependent on the amount of nitrate available at any given time, modeled differences in other components of the N cycle (e.g., N2 fixation, N harvest, change in soil N storage) no doubt led to differences in predicted denitrification. Model comparisons suggest our ability to accurately predict denitrification fluxes (without known values) from the dominant agroecosystem in the midwestern Illinois is quite uncertain at this time.  相似文献   

9.
Apart from the forest floor, the canopy of forested ecosystems functions as the second most important source for dissolved and particulate fractions of organic and inorganic C and N compounds. However, under mass outbreak situations of insect herbivores this flux path of organic matter is considerably intensified clearly exceeding C and N fluxes from the forest floor. In this paper we report on herbivore-altered C and N fluxes from the canopy to the forest floor and effects on forest floor nutrient fluxes during severe defoliating herbivory of the winter moth (Operophtera brumata) and the mottled umber moth (Eranis defoliaria) in an oak forest in Germany. Over the course of 6.5 months we followed the C and N fluxes with bulk deposition, throughfall solution, insect frass deposits (green-fall together with insect faeces) and with forest floor solution in an 117-yr-old oak (Quercus petraea) forest. Compared to the control, herbivore defoliation significantly enhanced throughfall inputs of total and dissolved organic carbon and nitrogen by a factor of 3 and 2.5 (for TOC and DOC), and by 1.4 and 1.3 times (for TNb and DNb), respectively. Frass plus green-fall C and N fluxes peaked in May with 592 kg C?ha?1 and 33.5 kg N?ha?1 representing 79.6% (for C) and 78.3% (for N) of the total C and N input over 2.5 months. The quantitative and qualitative C and N input via faeces and litter deposition significantly differ between the insect affected and non-affected site. However, the C and N fluxes with throughfall did not significantly correlate with forest floor leachates. In this context, forest floor fluxes of TOC, DOC and NO3-N were significantly lower at the infested site compared to the control, whereas fluxes of NH4-N together with DON were significantly higher. The study demonstrates the importance of linking the population and associated frass dynamics of herbivorous insects with the cycling of nutrients and organic matter in forest ecosystems, highlighting the remarkable alterations in the timing, amounts and nature of organic matter dynamics on the ecosystem level. Consequently, the ecology of phytophagous insects allows partly to explain temporal-spatial alterations in nutrient cycling and thus ecosystem functioning.  相似文献   

10.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

11.
Nitrogen (N) deposition and land management practices can have profound impacts on the structure and functioning of alpine ecosystems occupying headwaters of major river systems. Such impacts have the potential to result in loss of N to surface waters and acidification, both of which could have serious consequences for water quality and downstream habitats. We present results from a 6-year study of Calluna-dominated alpine heathland in Scotland, designed to assess the interactive effects of N addition (0 and 50 kg N ha?1 y?l), simulated accidental fire and grazing on soil solution chemistry. Both N addition and to a lesser extent burning had significant effects on soil solution chemistry, whereas grazing had no significant impact. Soil solution nitrate (NO3 ?) and ammonium (NH4 +) concentration showed a rapid response to N addition and N addition also resulted in acidification of soil solution. A ‘flush’ of base cations, which normally buffer soil from the acid effects of deposited N, accompanied the excess N released from the soil to soil solution. The N treatment had no effect on dissolved organic carbon (DOC), however, concentrations were significantly (14%) lower at the burned plots. In addition to treatment effects, temporal analysis of data from control plots demonstrated that soil solution chemistry was influenced by extremes in weather conditions. Peak NO3 ? concentrations were observed in soil solution following the cold winter of 2000–2001 when there were frequent freeze/thaw events. A large pulse of base cations was lost from the soil following the dry year of 2003. These weather-induced responses potentially exacerbate the treatment effects observed in this study.  相似文献   

12.
The results of a long-term (1999–2007) investigation of vegetation productivity and carbon dioxide (CO2) emission from the surface of an oligotrophic mire in southern taiga in Western Siberia are presented. The studied ecosystems include pine—shrub—sphagnum (PSS) community, a similar community with oppressed (low) tree stand (LPSS), and sedge—sphagnum fen (SSF). Net primary production for PSS, LPSS and SSF are equal to 552, 575, and 561 g m?2 yr?1. The mean respiration during the snow-free season determined by chamber method is 165.8, 105.6, 112.4 mgCO2 m?2 h?1 for PSS, LPSS and SSF, respectively. Field measurements of NPP and CO2 emission in combination with reference data on methane emission, winter CO2 and CH4 emissions and carbon export by river run–off were used to develop an overall carbon budget of the mire ecosystems. At present conditions the studied mire ecosystems are net sinks for atmospheric carbon and accumulate peat. Rates of the actual modern carbon accumulation are equal to 21, 112 and 102 g C m?2 yr?1 for PSS, LPSS and SSF communities.  相似文献   

13.
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.  相似文献   

14.
Climatic warming will probably have particularly large impacts on carbon fluxes in high altitude and latitude ecosystems due to their great stocks of labile soil C and high temperature sensitivity. At the alpine treeline, we experimentally warmed undisturbed soils by 4 K for one growing season with heating cables at the soil surface and measured the response of net C uptake by plants, of soil respiration, and of leaching of dissolved organic carbon (DOC). Soil warming increased soil CO2 effluxes instantaneously and throughout the whole vegetation period (+45%; +120 g C m y?1). In contrast, DOC leaching showed a negligible response of a 5% increase (NS). Annual C uptake of new shoots was not significantly affected by elevated soil temperatures, with a 17, 12, and 14% increase for larch, pine, and dwarf shrubs, respectively, resulting in an overall increase in net C uptake by plants of 20–40 g C m?2y?1. The Q 10 of 3.0 measured for soil respiration did not change compared to a 3-year period before the warming treatment started, suggesting little impact of warming-induced lower soil moisture (?15% relative decrease) or increased soil C losses. The fraction of recent plant-derived C in soil respired CO2 from warmed soils was smaller than that from control soils (25 vs. 40% of total C respired), which implies that the warming-induced increase in soil CO2 efflux resulted mainly from mineralization of older SOM rather than from stimulated root respiration. In summary, one season of 4 K soil warming, representative of hot years, led to C losses from the studied alpine treeline ecosystem by increasing SOM decomposition more than C gains through plant growth.  相似文献   

15.
Alpine meadow covers ca. 700,000 km2 with an extreme altitude range from 3200 m to 5200 m. It is the most widely distributed vegetation on the vast Qinghai-Tibetan Plateau. Previous studies suggest that meadow ecosystems play the most important role in both uptake and storage of carbon in the plateau. The ecosystem has been considered currently as an active “CO2 sink”, in which roots may contribute a very important part, because of the large root biomass, for storage and translocation of carbon to soil. To bridge the gap between the potential importance and few experimental data, root systems, root biomass, turnover rate, and net primary production were investigated in a Kobresia humilis meadow on the plateau during the growing season from May to September in 2008 and 2009. We hypothesized that BNPP/NPP of the alpine meadow would be more than 50%, and that small diameter roots sampled in ingrowth cores have a shorter lifespan than the lager diameter roots, moreover we expected that roots in surface soils would turn over more quickly than those in deeper soil layers. The mean root mass in the 0–20 cm soil layer, investigated by the sequential coring method, was 1995?±?479 g?m?2 and 1595?±?254 g?m?2 in growing season of 2008 and 2009, respectively. And the mean fine root biomass in ingrowth cores of the same soil layer was 119?±?37 g?m?2 and 196?±?45 g?m?2 in the 2 years. Annual total NPP was 12387 kg?ha?1?year?1, in which 53% was allocated to roots. In addition, fine roots accounted for 33% of belowground NPP and 18% of the total NPP, respectively. Root turnover rate was 0.52 year?1 for bulk roots and 0.74 year?1 for fine roots. Furthermore, roots turnover was faster in surface than in deeper soil layers. The results confirmed the important role of roots in carbon storage and turnover in the alpine meadow ecosystem. It also suggested the necessity of separating fine roots from the whole root system for a better understanding of root turnover rate and its response to environmental factors.  相似文献   

16.
To clarify responses of plant and soil carbon (C) and nitrogen (N) pools in grassland ecosystem to N addition, a field experiment was performed in a grassland in Keerqin Sandy Lands, Northeast China. We investigated vegetation composition and C and N pools of plant and soil (0–30 cm) after five consecutive years of N addition at a rate of 20 g N m?2 y?1. Vegetation composition and species diversity responded dramatically to N addition, as dominance by C4 perennials was replaced with C3 annuals. Carbon in aboveground pool increased significantly (over two-fold), mainly due to the increase of the C in aboveground living plants and surface litter, which increased by 98 and 134%, respectively. Although soil C did not change significantly, the root C pool decreased in response to 5 years of N addition. The total ecosystem C pool was not significantly impacted by N addition because the large soil pool did not respond to N addition, and the increase in aboveground C was offset by the decrease in root C pool. Moreover, N addition significantly increased the aboveground N pool, but had no significant effects on belowground and total ecosystem N pools. Our results suggest that in the mid-term N addition alters the C and N partitioning in above- and belowground pools, but has no significant effects on total ecosystem C and N pools in these N-limited grasslands.  相似文献   

17.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

18.
Proliferation of woody plants is a predominant global land cover change of the past century, particularly in dryland ecosystems. Woody encroachment and its potential impacts (e.g., livestock forage, wildlife habitat, hydrological cycling) have led to widespread brush management. Although woody plants may have substantial impacts on soils, uncertainty remains regarding woody encroachment and brush management influences on carbon (C) pools. Surface C pools (shallow soils and litter) may be particularly dynamic in response to encroachment and brush management. However, we have limited understanding of spatiotemporal patterns of surface C responses or how surface pools respond relative to aboveground C, litter, roots, and deep soil organic C. Spatial variability and lack of basic ecological data in woody-encroached dryland ecosystems present challenges to filling this data gap. We assessed the impact of western juniper (Juniperus occidentalis) encroachment and removal on C pools in a semi-arid sagebrush ecosystem. We used spatially-intensive sampling to create sub-canopy estimates of surface soil C (0–10 cm depth) and litter C pools that consider variation in tree size/age and sub-canopy location for live juniper and around stumps that were cut 7 years prior to sampling. We coupled the present size distribution of junipers with extensive existing allometric information about juniper in this region to estimate how landscape-level C pools would change through time under future management and land cover scenarios. Juniper encroachment and removal leads to substantial changes in C pools. Best-fit models for surface soil and litter C included positive responses to shrub basal diameter and negative responses to increasing relative distance from the bole to dripline. Juniper removal led to a net loss of surface C as a function of large decreases in litter C and small increases in surface soil C. At the landscape scale, deep soil C was the largest C pool (77 Mg C ha?1), with an apparent lack of sensitivity to management. Overall, encroachment led to substantial increases in C storage over time as juniper size increased (excluding deep soil C, ecosystem C pools increased from 13.5 to 30.2 Mg C ha?1 with transition from sagebrush-dominated to present encroachment levels). The largest pool of accumulation was juniper aboveground C, with important other pools including juniper roots, litter, and surface soil C. Woody encroachment and subsequent brush management can have substantive impacts on ecosystem C pools, although our data suggest the spatiotemporal patterns of surface C pools need to be properly accounted for to capture C pool responses. Our approach of coupling spatially-intensive surface C information with shrub distribution and allometric data is an effective method for characterizing ecosystem C pools, offering an opportunity for filling in knowledge gaps regarding woody encroachment and brush management impacts on local-to-regional ecosystem C pools.  相似文献   

19.
Sustainable nutrient cycling in agroecosystems combining grazing and crops has global ramifications for protecting these ecosystems and for the livelihoods they support. We sought to understand environmental, management, and social drivers of nutrient management and sustainability in Andean grazing/crop systems. We assessed the impact of farmer wealth, fields’ proximity to villages, topography, and rangeland net primary productivity (NPP) on mass balances for nitrogen (N), phosphorus (P), and potassium (K) of 43 fields. Wealthier farmers applied greater total amounts (kg) of manure nutrients. However, higher manure application rates (kg ha?1) were associated with field proximity and NPP rather than wealth. Manure P inputs in far fields (> 500-m distant) were half those in near fields. Harvest exports increased with manure inputs (P < 0.001) so that balances varied less than either of these flows. Erosion nutrient losses in steeper far fields matched crop exports, and yields declined with increasing field slope (P < 0.001), suggesting that erosion reduces productivity. Balances for P were slightly positive in near and far fields (+2.2 kg P ha?1 y?1, combined mean) when calculated without erosion, but zero in near fields and negative in far fields with erosion included (?6.1 kg P ha?1 y?1 in far fields). Near/far differences in both inputs and erosion thus drove P limitation. Crop K exports dominated K balances, which were negative even without accounting for erosion. Modeled intensification scenarios showed that remediating far field deficits would require P addition and erosion reduction. Management nested within environmental constraints (NPP, erosion) rather than socioeconomic status drives soil nutrient sustainability in these agroecosystems. Time-lags between management and long-term degradation are a principal sustainability challenge to farming in these montane grazing/crop agroecosystems.  相似文献   

20.
Questions: Are there changes in species composition of the oceanic, Low‐Arctic tundra vegetation after 40 years? Can possible changes be attributed to climate change? Location: Ammassalik Island near Tasiilaq, Southeast Greenland. Methods: Species composition and cover of 11 key vegetation types were recorded in 110 vegetation survey plots in 1968–1969 and in 11 permanent plots in 1981. Recording was repeated in 2007. Temporal changes in species composition and cover between the surveys were tested using permutation tests linked with constrained ordinations for vegetation types, and Mann–Whitney tests for individual species. Changes in vegetation were related to climate change. Results: Although climate became warmer over the studied period, most of the vegetation types showed minor changes. The changes were most conspicuous in mire and snowbed vegetation, such as the Carex rariflora mire and Hylocomium splendens snowbed. In the C. rariflora mire, species number and cover of vascular plants and cover of bryophytes increased, whereas in the H. splendens snowbed species numbers of vascular plants, bryophytes, and also lichens increased. Lichen richness increased in the Carex bigelowii snowbed and cover of bryophytes in the Salix herbacea snowbed. No such changes occurred in the Alchemilla glomerulans meadow, Alchemilla alpina snowbed and Phyllodoce coerulea heath. There was no change of species composition within the Salix glauca scrub, A. alpina snowbed, lichen grassland and the Empetrum nigrum and Phyllodoce coerulea heaths. Most changes resulted from increasing frequency or cover of some species; there were very few decreasing species. Most of the increasing species indicate drier substrate conditions. Conclusions: Only minor changes in species composition and cover were detected in the vegetation types studied. These changes were probably caused by milder winters and warmer summers during the years before the 2007 sampling. Climate warming may have reduced the duration of snow cover and soil moisture, particularly in snowbed and mire habitats, where species composition change was most pronounced. However, its magnitude was insufficient to cause a major change in species composition. Thus, on the level of plant community types, tundra vegetation near Tasiilaq was rather stable over the last 40 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号