首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil-borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences.  相似文献   

2.
Biochar, pyrolyzed biomass, has been shown to be a promising way to improve plant productivity and soil quality. Biochar characteristics and its effect on plant performance depend strongly on the type of feedstock from which it is made. However, whether biochars produced from individual grassland species differ in their characteristics and effects on plant growth when applied to soil is poorly understood. The aim of this study was to examine how soil application of pyrolyzed and non-pyrolyzed biomass originating from different grassland species influences plant performance.We measured the growth of the forb Jacobaea vulgaris in soil amended with pyrolyzed or non-pyrolyzed biomass of seven different plant species, and in control soil without amendments.The characteristics (nutrient content, C:N) and effects on plant growth of both pyrolyzed and non-pyrolyzed biomass differed significantly between species from which the biomass originated (‘feedstock species’). For most feedstock species there was no relationship between the effects that the pyrolyzed and the non-pyrolyzed biomass had on plant performance. Our results show that pyrolyzed grassland species differ in their characteristics and their effect on plant growth when amended to soil. This shows that it is important to test what the effect of pyrolysing a chosen feedstock is on a species before applying it on a larger scale and that potentially biochar with predefined effects could be designed for specific purposes.  相似文献   

3.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

4.
5.
While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize’s global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations.Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.  相似文献   

6.
7.
8.
裸肉足虫作为联结微生物和大中型土壤动物的重要环节, 在土壤生态系统物质循环和能量流动过程中起着重要作用。为探明裸肉足虫群落沿海拔梯度的分布特征及其主要驱动因子, 作者在长白山北坡选择不同海拔梯度(700 m、1,000 m、1,300 m、1,600 m、1,900 m和2,200 m), 采用最大可能数法对裸肉足虫进行了培养计数, 并采用平板培养、标记、分离再培养的方法进行了分类鉴定, 分析比较了不同海拔梯度裸肉足虫的群落组成和结构特征。结果表明: 长白山北坡裸肉足虫物种丰富, 不同海拔梯度裸肉足虫丰富度指数存在显著差异, 且与土壤酸碱度呈极显著正相关关系。其中林分较为单一的岳桦(Betula ermanii)林带(1,900 m)裸肉足虫丰富度最低, 位于植被交错带的针阔混交林带(1,000 m)裸肉足虫丰富度最大, Shannon-Wiener多样性指数和Pielou均匀度指数在不同海拔梯度间不存在显著性差异, 但变化趋势与丰富度一致。聚类分析结果显示, 1,300 m、1,600 m和1,900 m海拔带以及700 m和2,200 m海拔带裸肉足虫群落组成较为相似。典范对应分析(canonical correspondence analysis, CCA)显示, 裸肉足虫群落组成和结构主要受土壤酸碱度、铵态氮以及碳氮比的影响, 而海拔和土壤含水量对其没有显著影响。综上, 裸肉足虫群落多样性随海拔梯度的增加并未呈现递减或单峰的变化趋势, 土壤的基本理化性质是驱动裸肉足虫群落分布的主要因素; 此外, 地上植被也可能通过凋落物和根系分泌物间接影响裸肉足虫的群落组成和多样性。  相似文献   

9.
10.
11.
用不同浓度的骆驼蓬提取物处理豌豆种子,明显导致幼苗根系活力及叶绿素和叶片可溶性蛋白质含量下降,膜透性增加。分析表明,骆驼蓬提取物处理下幼苗叶片膜脂过氧化作用增强;过氧化物酶(POD)活性提高;而超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低。  相似文献   

12.
This study presents a series of experiments carried out in order to elucidate the role of H2O2 in antimicrobial activity of lactobacilli. Vaginal swabs were collected from 60 premenopausal women and checked for pH and Nugent score, and Lactobacillus species were cultured, phenotyped and genotyped. The main outcome measures involved: (1) species of vaginal lactobacilli most effective in liberating H2O2, (2) minimal microbicidal concentrations of added H2O2, (3) kinetics of H2O2 liberation in relation to oxygen tension, (4) antimicrobial activity of pure H2O2 versus one produced by selected vaginal lactobacilli and the total activity of their culture supernatants. Results showed that H2O2 was liberated especially by: Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus johnsonii and L. gasseri. Hydrogen peroxide reached concentrations from 0.05 to 1.0 mM, which under intensive aeration increased even up to 1.8 mM. Microorganisms related to vaginal pathologies show varied resistance to the action of pure H2O2. Most potent inhibitory activity against bacteria and yeasts was presented by Lactobacillus culture supernate producing H2O2, followed by the nonproducing strain and pure H2O2. To conclude - the antimicrobial activity of lactobacilli is a summation of various inhibitory mechanisms in which H2O2 plays some but not a crucial role, in addition to other substances.  相似文献   

13.
Plant-associated microbiomes can improve plant fitness by ameliorating environmental stress, providing a promising avenue for improving outplantings during restoration. However, the effects of water management on these microbial communities and their cascading effects on primary producers are unresolved for many imperiled ecosystems. One such habitat, Everglades tree islands, has declined by 54% in some areas, releasing excess nutrients into surrounding wetlands and exacerbating nutrient pollution. We conducted a factorial experiment, manipulating the soil microbiome and hydrological regime experienced by a tree island native, Ficus aurea, to determine how microbiomes impact growth under two hydrological management plans. All plants were watered to simulate natural precipitation, but plants in the “unconstrained” management treatment were allowed to accumulate water above the soil surface, while the “constrained” treatment had a reduced stage to avoid soil submersion. We found significant effects of the microbiomes on overall plant performance and aboveground versus belowground investment; however, these effects depended on hydrological treatment. For instance, microbiomes increased investment in roots relative to aboveground tissues, but these effects were 142% stronger in the constrained compared to unconstrained water regime. Changes in hydrology also resulted in changes in the prokaryotic community composition, including a >20 log2fold increase in the relative abundance of Rhizobiaceae, and hydrology-shifted microbial composition was linked to changes in plant performance. Our results suggest that differences in hydrological management can have important effects on microbial communities, including taxa often involved in nitrogen cycling, which can in turn impact plant performance.  相似文献   

14.
缑旭东  冯卓 《古生物学报》2021,60(2):299-313
树木生长轮记录了植物生长期的气候环境信息及其生理响应过程,而这些信息可以通过定量分析生长轮的解剖学特征获得,因此生长轮的定量分析被广泛应用于林学、地理学、古气候学和古生物学等研究领域.我国虽然保存了丰富的木化石,但前人多从系统分类学角度研究木化石,而较少利用木化石生长轮定量分析方法开展古气候环境的研究.本文主要结合松柏...  相似文献   

15.
运用Biolog EcoPlate技术, 对武夷山不同海拔植被带(常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)、高山草甸(AM))土壤微生物群落多样性差异进行了研究。结果表明: 不同海拔植被带土壤微生物群落功能多样性差异显著。土壤平均颜色变化率(AWCD)随培养时间延长而逐渐增加, 同一深度土层的AWCD值随海拔升高而逐渐降低, 大小顺序依次为EFB > CF > DF > AM。同一海拔植被带, 不同深度土层的AWCD值总体趋势依次为0-10 cm > 10-25 cm > 25-40 cm。土壤微生物群落Simpson指数、Shannon-Wiener指数、丰富度指数和McIntosh指数的总体趋势为EBF最高, CF和DF次之, AM最低。不同海拔植被带土壤微生物对不同碳源利用强度存在较大差异, 其中EBF利用率最高, AM利用率最低, 碳水化合物和羧酸类碳源是各海拔植被带土壤微生物的主要碳源。主成分分析结果表明, 从31个因素中提取的与碳源利用相关的主成分1、主成分2分别能解释变量方差的75.27%和16.14%, 在主成分分离中起主要贡献作用的是胺类和氨基酸类碳源。土壤微生物群落多样性随着海拔上升、土层加深而逐渐下降的原因, 可能是生物量、林分凋落物、土壤养分、微小动物、植物根系等多种因素共同作用的结果。  相似文献   

16.
Igwe  Alexandria N.  Vannette  Rachel L. 《Plant and Soil》2019,435(1-2):423-436
Plant and Soil - We aimed to determine the effect of Piriformospora indica inoculation on maize maximum root growth pressure (σmax) and root elongation rate (ER) over a wide range of water...  相似文献   

17.
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca2+, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles move in an unusual fountain pattern, as opposed to reverse fountain, in the tip. Ratiometric ion imaging of growing pollen tubes, microinjected with fura-2-dextran, reveals a tip-focused [Ca2+]i gradient extending from 450 nM at the extreme apex to 225 nM at the base of the tip clear zone. Injection of 5,5' dibromo-BAPTA does not dissipate the apical gradient, but stops cell elongation and uniquely causes rapid, transient increases of apical free Ca2+. The [Ca2+]i gradient is, however, dissipated by reversible perfusion of extracellular caffeine. When the basal cytosolic free Ca2+ concentration falls below 150 nM, again a large increase in apical [Ca2+]i occurs. An external source of calcium is not required for germination but significantly enhances elongation. However, both germination and elongation are significantly inhibited by the inclusion of calcium channels blockers, including lanthanum, gadolinium, or verapamil. Modulation of intracellular calcium also affects organelle position and motility. Extracellular perfusion of lanthanides reversibly depletes the apical [Ca2+]i gradient, altering organelle positioning in the tip. Later, during recovery from lanthanide perfusion, organelle motility switches direction to a reverse fountain. When taken together these data show a unique interplay in Picea abies pollen tubes between intracellular calcium and the motile processes controlling cellular organization.  相似文献   

18.
太行山区不同植被群落土壤微生物学特征变化   总被引:22,自引:0,他引:22  
为评价太行山区不同植被群落土壤微生物学特征,比较分析了针阔混交林、针叶混交林、针叶纯林、落叶阔叶纯林、灌丛和裸露地6种不同植被群落中的土壤微生物区系、微生物生物量和呼吸强度等指标的变化.结果表明,6种不同植被群落土壤中的微生物学特征存在较大差异. 灌丛地在微生物数量和微生物生物量两项指标中均为最高,其余植被群落在这两项指标中的顺序从大到小依次为落叶阔叶纯林>针阔混交林>针叶纯林>针叶混交林>裸地,土壤呼吸强度也有相似的变化趋势.在进行退化山地的植被恢复时,应充分重视生态系统的自然恢复能力.  相似文献   

19.
Plant genotypes can have important community‐ and ecosystem‐level effects. However, whether the extended phenotypes of plants feed back to influence the fitness of causal genotypes through soil processes remains unknown. We investigated whether aspen genotypes create distinct soil microbial communities that could potentially affect plant fitness. Using naturally occurring aspen stands in an old‐field system, we set up reciprocal litter transplants among ten genetically distinct aspen clones and tracked decomposition and changes in belowground nutrients and microbial communities for three years. We found that belowground microbial communities became adapted to process specific genotypes of aspen litter to the extent allowable by environment and litter chemistry. Belowground processes were driven by a combination of little quality and prior exposure to specific genotypes of litter. In general, litter from aspen genotypes native to the soil community decomposed more rapidly than did litter from foreign aspen genotypes (i.e. a home‐field advantage existed). While home‐field advantages have been documented to occur among litters of different species, we show that intraspecific variation can elicit similar, albeit weak, effects within a single species. Because rapid decomposition and nutrient cycling is likely to benefit fast‐growing, early‐successional species such as aspen, genotype‐mediated selection for soil microbial communities may feed back to positively affect plant fitness. In addition, belowground communities exhibited significant shifts in response to leaf litter inputs. When exposed to foreign litter, microbial communities changed to become more similar to the microbial community beneath the foreign litter's origin, indicating that belowground microbial communities are predictable given the genotype of the aboveground aspen clone.  相似文献   

20.
Linker histone H1 is located on the surface of the nucleosome where it interacts with the linker DNA region and stabilizes the 30-nm chromatin fiber. Vertebrates have several different, relatively conserved subtypes of H1; however, the functional reason for this is unclear. We have previously shown that H1 can be reconstituted in Xenopus oocytes, cells that lack somatic H1, by cytosolic mRNA injection and incorporated into in vivo assembled chromatin. Using this assay, we have expressed individual H1 subtypes in the oocytes to study their effect on chromatin structure using nucleosomal repeat length (NRL) as readout. We have compared chicken differentiation-specific histone H5, Xenopus differentiation-specific xH1(0) and the somatic variant xH1A as well as the ubiquitously expressed human somatic subtypes hH1.2, hH1.3, hH1.4 and hH1.5. This shows that all subtypes, except for human H1.5, result in a saturable increase in NRL. hH1.4 results in an increase of approximately 13-20 bp as does xH1(0) and xH1A. chH5 gives rise to the same or slightly longer increase compared to hH1.4. Interestingly, both hH1.2 and hH1.3 show a less extensive increase of only 4.5-7 bp in the NRL, thus yielding the shortest increase of the studied subtypes. We show for the first time in an in vivo system lacking H1 background that ubiquitously expressed and redundant H1 subtypes that coexist in most types of cells of higher eukaryotes differ in their effects on the nucleosomal spacing in vivo. This suggests that H1 subtypes have different roles in the organization and functioning of the chromatin fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号