首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

2.
The biosphere–atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997–1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447‐m WLEF‐TV tower as part of the Chequamegon Ecosystem–Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June–August (24±14.4 mg m?2 day?1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m?2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m?2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long‐term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4.  相似文献   

3.
Wetland‐adapted trees are known to transport soil‐produced methane (CH4), an important greenhouse gas to the atmosphere, yet seasonal variations and controls on the magnitude of tree‐mediated CH4 emissions remain unknown for mature forests. We examined the spatial and temporal variability in stem CH4 emissions in situ and their controls in two wetland‐adapted tree species (Alnus glutinosa and Betula pubescens) located in a temperate forested wetland. Soil and herbaceous plant‐mediated CH4 emissions from hollows and hummocks also were measured, thus enabling an estimate of contributions from each pathway to total ecosystem flux. Stem CH4 emissions varied significantly between the two tree species, with Alnus glutinosa displaying minimal seasonal variations, while substantial seasonal variations were observed in Betula pubescens. Trees from each species emitted similar quantities of CH4 from their stems regardless of whether they were situated in hollows or hummocks. Soil temperature and pore‐water CH4 concentrations best explained annual variability in stem emissions, while wood‐specific density and pore‐water CH4 concentrations best accounted for between‐species variations in stem CH4 emission. Our study demonstrates that tree‐mediated CH4 emissions contribute up to 27% of seasonal ecosystem CH4 flux in temperate forested wetland, with the largest relative contributions occurring in spring and winter. Tree‐mediated CH4 emissions currently are not included in trace gas budgets of forested wetland. Further work is required to quantify and integrate this transport pathway into CH4 inventories and process‐based models.  相似文献   

4.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

5.
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m?2 min?1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m?2 min?1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.  相似文献   

6.
Wetlands are estimated to contribute nearly 40 % of global annual methane (CH4) emissions to the atmosphere. However, because CH4 fluxes from these systems vary spatially, seasonally, and by wetland type, there is a large uncertainty associated with scaling up the CH4 flux from these environments. We monitored seasonal patterns of CH4 cycling from tidal mudflat wetland sediments adjacent to a vegetated freshwater wetland in coastal Georgia between 2008 and 2009. CH4 emissions were significantly correlated with CH4 production and sediment saturation state with respect to CH4 but not with temperature. CH4 cycling displayed distinct seasonal patterns. Winter months were characterized by low CH4 production and emissions. During the spring, summer and fall, CH4 fluxes exceeded CH4 production in the top 40 cm. Comparison of CH4 sources and sinks in conjunction with the interpretation of CH4 concentration profiles using a 1D reactive transport model indicated that CH4 delivered via lateral tidal pumping likely provided additional CH4 to the upper sediment column. Seasonally high CH4 ebullition rates reflected increased CH4 production and decreased CH4 solubility. The annual CH4 flux was estimated to be on the order of 10 mol CH4 m?2 y?1 which is 2–4 times the global average for wetland CH4 emissions. Thus, even though tidal freshwater mudflats are of limited spatial extent, these environments may serve as globally significant sources of CH4 to the atmosphere. This study highlights the importance of these dynamic environments to the global CH4 cycle and their relevance to climate change.  相似文献   

7.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

8.
Hot spots of CH4 emissions are a typical feature of pristine peatlands at the microsite and landscape scale. To determine whether rewetting and lake construction in a cutaway peatland would result in the re‐creation of hot spots, we first measured CH4 fluxes over a 2‐year period with static chambers and estimated annual emissions. Second, to assess whether rewetting and lake creation would produce hot spots at the landscape level, we hypothesized a number of alternative land use scenarios for the peatland following the cessation of peat extraction. Using the results from this study and other studies from literature, we calculated the global warming potential (GWP) of each scenario and the respective contribution of CH4. The results showed that hot spots of CH4 fluxes were observed as a consequence of microsite‐specific differences in water table (WT) position and plant productivity. CH4 fluxes were closely related to peat temperature at 10 cm depth and WT position. Annual emissions ranged from 4.3 to 38.8 g CH4 m?2 yr?1 in 2002 and 3.2 to 28.8 g CH4 m?2 yr?1 in 2003. The scenario results suggest that lake creation is likely to result in the re‐creation of a hot spot at the landscape level. However, the transition from cutaway to wetland ecosystem may lead to a reduction in the GWP of the peatland.  相似文献   

9.
This paper investigates the relationship between vascular plant production and CH4 emissions from an arctic wet tundra ecosystem in north‐east Greenland. Light intensity was manipulated by shading during three consecutive growing seasons (1998–2000). The shading treatment resulted in lower carbon cycling in the ecosystem as mean seasonal net ecosystem exchange (NEE) decreased from ?336 to ?196 mg CO2 m?2 h?1 and from ?476 to ?212 mg CO2 m?2 h?1 in 1999 and 2000, respectively, and total ecosystem respiration decreased from 125 to 94 mg CO2 m?2 h?1 in 1999 and from 409 to 306 mg CO2 m?2 h?1 in 2000. Seasonal mean CH4 emissions in controls and shaded plots were, respectively, 6.5 and 4.5 mg CH4 m?2 h?1 in 1999 and 8.3 and 6.2 mg CH4 m?2 h?1 in 2000. We found that CH4 emission was sensitive to NEE and carbon turnover, and it is reasonable to assume that the correlation was due to a combined effect of vegetative CH4 transport and substrate quality coupled to vascular plant production. Total above‐ground biomass was correlated to mean seasonal CH4 emission, but separation into species showed that plant‐mediated CH4 transport was highly species dependent. Potential CH4 production peaked at the same depth as maximum root density (5–15 cm) and treatment differences further suggest that substrate quality was negatively affected by decreased NEE in the shaded plots. The concentration of dissolved CH4 decreased in the control plots as the growing season progressed while it was relatively stable in the shaded plots. This suggests that a progressively better developed root system in the controls increased the capacity to transport CH4 from the soil to the atmosphere. In conclusion, vascular plant photosynthetic rate and subsequent allocation of recently fixed carbon to below‐ground structures seemed to influence both vegetative CH4 transport and substrate quality.  相似文献   

10.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   

11.
Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May–September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181–215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m?2 s?1 (4.6 mg CH4 m?2 h?1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144–269 (late May–late September)], the total CH4 emission was 3.2 g CH4 m?2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m?2 or 217 g C m?2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years.  相似文献   

12.
Wetlands are the single largest natural source of atmospheric methane (CH4), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between “bottom‐up” and “top‐down” estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m?2 year?1 in tundra bogs to 78 g m?2 year?1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m?2 year?1. The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process‐based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data‐constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high‐latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.  相似文献   

13.
Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.  相似文献   

14.
Wetlands are the largest natural source of methane (CH4) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4, but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model—iPEACE—reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.  相似文献   

15.
张贤  朱求安  杨斌  王洁仪  陈槐  彭长辉 《生态学报》2020,40(9):3060-3071
甲烷(CH4)是大气中最丰富的碳氢化合物,是仅次于二氧化碳(CO2)的温室气体。湿地是甲烷的重要来源,在全球碳循环中发挥着重要作用,其排放的甲烷占所有天然甲烷排放源的70%,占全球甲烷排放总量的24.8%。青藏高原平均海拔4000 m以上,占有中国约三分之一的湿地。近几十年来,由于全球气候变暖和降水增加,该地区甲烷排放率和湿地面积都发生着巨大变化,因此,青藏高原湿地CH4排放的长期变化在很大程度上仍存在较大的不确定性。利用TRIPLEX-GHG模型模拟了青藏高原湿地1978—2008年CH4排放的动态特征,研究结果表明:(1)1978—2008年青藏高原湿地CH4排放速率呈逐渐增加趋势。(2)青藏高原大多数湿地区域CH4排放速率为0—6.13 g CH4 m-2 a-1;东北部分湿地区域CH4排放速率为6.14—20.19 g CH4 m...  相似文献   

16.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

17.
Plants can influence methane emissions from wetland ecosystems by altering its production, consumption and transport in the soil. The aim of this study was to investigate how eight vascular plant species from mesotrophic to eutrophic wetlands vary in their influence on CH4 emissions from peat cores, under low and high N supply. Additionally, we measured the production of low-molecular-weight organic acids (LOA) by the same species (also at low and high N supply), because LOA form a substrate for methanogenesis. There were considerable differences among species in their effects upon rates of CH4 emission. Six of the species (Eriophorum latifolium Hoppe, Potentilla palustris (L.) Scop., Anthoxanthum odoratum (L.) s. str., Carex rostrata Stokes, Carex elata All., Carex acutiformis Ehrh.) increased CH4 emissions up to five times compared to control peat cores without plants, whereas two species (Phalaris arundinacea L., Phragmites australis (Cav.) Trin. ex Steud.) had no effect. There was a weak negative correlation between plant biomass and CH4 emission. N addition had no significant general effect upon CH4 emission. LOA production varied considerably among species, and tended to be highest for species from mesotrophic habitats. LOA production was stimulated by N addition. We conclude that some species from mesotrophic wetlands tend to cause higher CH4 emissions than species from eutrophic wetlands. This pattern, which contradicts what is often mentioned in literature, may be explained by the higher LOA production rates of species adapted to less productive habitats.  相似文献   

18.

Aims and methods

To evaluate the seasonal and spatial variations of methane (CH4) emissions and understand the controlling factors, we measured CH4 fluxes and their environmental variables for the first time by a static chamber technique in high Suaeda salsa marsh (HSM), middle S. salsa marsh (MSM), low S. salsa marsh (LSM) and bare flat (BF) in the northern Yellow River estuary throughout a year.

Results

CH4 emissions from coastal marsh varied throughout different times of the day and significant differences were observed in some sampling periods (p?<?0.05). Over all sampling periods, CH4 fluxes averaged between ?0.392 mgCH4 m?2?h?1 and 0.495 mgCH4 m?2?h?1, and emissions occurred during spring (0.008 mgCH4 m?2?h?1) and autumn (0.068 mgCH4 m?2?h?1) while sinks were observed during summer (?0.110 mgCH4 m?2?h?1) and winter (?0.009 mgCH4 m?2?h?1). CH4 fluxes from the four marshes were not significantly different (p?>?0.05), and emissions occurred in LSM (0.026 mgCH4 m?2?h?1) and BF (0.055 mgCH4 m?2?h?1) while sinks were observed in HSM (?0.035 mgCH4 m?2?h?1) and MSM (?0.022 mgCH4 m?2?h?1). The annual average CH4 flux from the intertidal zone was 0.002 mgCH4 m?2?h?1, indicating that coastal marsh acted as a weak CH4 source. Temporal variations of CH4 emission were related to the interactions of abiotic factors (temperatures, soil moisture and salinity) and the variations of limited C and mineral N in sediments, while spatial variations were mainly affected by the vegetation composition at spatial scale.

Conclusions

This study observed a large spatial variation of CH4 fluxes across the coastal marsh of the Yellow River estuary (CV?=?7856.25 %), suggesting that the need to increase the spatial replicates at fine scales before the regional CH4 budget was evaluated precisely. With increasing exogenous nitrogen loading to the Yellow River estuary, the magnitude of CH4 emission might be enhanced, which should also be paid more attentions as the annual CH4 inventory was assessed accurately.  相似文献   

19.
Understanding the dynamics of methane (CH4) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr?1, which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up‐to‐date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial‐scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process‐based biogeochemistry models.  相似文献   

20.
Peatlands are large terrestrial stores of carbon, and sustained CO2 sinks, but over the last century large areas have been drained for agriculture and forestry, potentially converting them into net carbon sources. More recently, some peatlands have been re-wetted by blocking drainage ditches, with the aims of enhancing biodiversity, mitigating flooding, and promoting carbon storage. One potential detrimental consequence of peatland re-wetting is an increase in methane (CH4) emissions, offsetting the benefits of increased CO2 sequestration. We examined differences in CH4 emissions between an area of ditch-drained blanket bog, and an adjacent area where drainage ditches were recently infilled. Results showed that Eriophorum vaginatum colonization led to a “hotspot” of CH4 emissions from the infilled ditches themselves, with smaller increases in CH4 from other re-wetted areas. Extrapolated to the area of blanket bog surrounding the study site, we estimated that CH4 emissions were around 60 kg CH4 ha?1 y?1 prior to drainage, reducing to 44 kg CH4 ha?1 y?1 after drainage. We calculated that fully re-wetting this area would initially increase emissions to a peak of around 120 kg CH4 ha?1 y?1, with around two-thirds of the increase (and 90% of the increase over pre-drainage conditions) attributable to CH4 emissions from E. vaginatum-colonized infilled ditches, despite these areas only occupying 7% of the landscape. We predicted that emissions should eventually decline toward pre-drainage values as the ecosystem recovers, but only if Sphagnum mosses displace E. vaginatum from the infilled ditches. These results have implications for peatland management for climate change mitigation, suggesting that restoration methods should aim, if possible, to avoid the colonization of infilled ditches by aerenchymatous species such as E. vaginatum, and to encourage Sphagnum establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号