首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Aims

This work examines Zn accumulation in four Anthyllis vulneraria subspecies supplemented with mineral nitrogen or grown in the presence of their symbiotic bacteria.

Methods

Anthyllis vulneraria subspecies were grown hydroponically in the presence of high levels of ZnSO4. The plants were either grown in symbiosis with one of two non-metallicolous or metallicolous Mesorhizobium inoculants or in the presence of KNO3.

Results

When exposed to 1,000 μM Zn, shoot and root biomass of three out of our four Anthyllis subspecies cultivated with NO3 dropped significantly by about 24–28 %; carpatica, the fourth subspecies, was not affected. Subspecies carpatica Zn tolerance was confirmed when in symbiosis with the metallicolous strain. In the presence of 1,000 μM Zn, the different Anthyllis subspecies concentrated more Zn in their roots than in their shoots and only subsp. carpatica accumulated a significant amount of Zn in its shoots. The most remarkable feature was the drastic decrease in Zn concentration in both roots (up to 2.5–3 fold) and shoots (2.6-fold) of subsp. carpatica exposed to 1,000 μM Zn and nodulated whatever the Mesorhizobium strain used, compared to the N-grown plants.

Conclusions

Our results bring new perspectives as regards phytostabilization, with the potential use of a rhizobium-inoculated leguminous subspecies displaying unusual Zn tolerance.  相似文献   

2.

Background and aims

The association of the legume Anthyllis vulneraria and the grass Festuca arvernensis, was found to be very efficient for the phytostabilisation of highly multi-metal contaminated mine tailings. Our objective was to quantify the contribution of Anthyllis inoculated with its symbiotic bacteria Mesorhizobium metallidurans to the soil N pool and to test whether a starter nitrogen fertilization may improve symbiotic nitrogen fixation and the growth of Festuca.

Methods

Plants of Festuca and of Anthyllis inoculated with M. metallidurans were grown separately during eight months in pots filled with mine contaminated soil. Estimation of the N fluxes was realized using 15?N isotopic methods.

Results

Starter N fertilization (28 kg N ha?1) improved symbiotic N2 fixation and the growth of both species. Belowground N balance (N rhizodeposition – soil N uptake) of the non-fertilized Anthyllis at maturity was negative (?30.6 kg N ha?1). However, the amount of N derived from fixation, including above- and belowground parts, was 78.6 kg N ha?1, demonstrating the ability of this symbiotic association to improve soil N content after senescence.

Conclusions

i) soil N enrichment by the N2-fixing symbiotic association occurs after plant senescence, when decaying leaves and shoots are incorporated into the soil; ii) application of a starter fertilization is an efficient solution to improve phytostabilisation of highly contaminated sites.  相似文献   

3.
Cistus ladanifer L. (Cistaceae) is a Mediterranean shrub covering different kinds of soils in the Western Mediterranean area. This species has colonised several metalliferous areas (serpentine outcrops as well as human-polluted sites) throughout its distribution range, and is therefore an interesting species to study the possible effects on genetic diversity and differentiation produced by the colonisation of areas polluted with heavy metals. The genetic structure of 33 natural populations distributed across its entire natural distribution range (Morocco, Portugal and Spain) and growing on either metalliferous or non-metalliferous soils was investigated using chloroplast microsatellites. Population genetic parameters were estimated and genetic groups were identified using Bayesian inference. In addition, we compared the genetic diversity and differentiation among metallicolous and non-metallicolous populations within each Bayesian-defined group. The cpSSR data suggested that metallicolous populations of Cistus ladanifer have arisen through multiple independent evolutionary origins within two different chloroplast lineages. Evidence that the soil type provoked genetic bottlenecks in metallicolous populations or genetic differentiation among metallicolous and non-metallicolous populations was not observed. Historical factors are the main cause of the present genetic structure of C. ladanifer. The nature of tolerance to heavy metals as a species-wide trait in this shrub is discussed.  相似文献   

4.
At present, no efficient technique is available for cleaning up soils which are highly polluted by heavy metals. Limiting the movement of pollutants out of the contaminated area by creating a dense and persistent plant cover appears to be the more reasonable approach. In this context, phytostabilization is a technique that uses metallicolous plants to revegetate highly polluted soils. This paper presents the results of an experiment performed in situ using metallicolous ecotypes of four plant species native to the Mediterranean French region, and grown in different combinations at a polluted site over two years. The soils were highly polluted with zinc, cadmium and lead. The aim was to find the best species mixture in terms of cover, biomass and duration. The four species used were the biennial legume Anthyllis vulneraria, two perennial grasses, Festuca arvernensis and Koeleria vallesiana, and the perennial forb Armeria arenaria. Mixtures which included A. vulneraria, and especially when in combination with F. arvernensis, showed the highest values of cover and biomass. After flowering, the biennial individuals of A. vulneraria disappeared but subsequent germination and survival of seedlings occurred abundantly under the two grasses. Mixtures with A. arenaria showed the lowest values of cover and biomass. Soil nitrogen increased in the plots with A. vulneraria as well as the concentration of essential nutrients (N P K) in the aerial parts of the two grasses. In contrast, the concentration of metals (Zn Pb Cd) decreased in the aboveground biomass of the latter in the same plots. These results show that reciprocal facilitation effects can act in heavy metal polluted environments, and that phytostabilization efforts in the Mediterranean region can be improved by using mixtures including local metallicolous legume and grass species.  相似文献   

5.
Biscutella laevigata is a facultative metallophyte, with populations on non-metalliferous and metalliferous soils. Some of its metallicolous populations have been shown to hyperaccumulate thallium or lead in nature. Only Tl hyperaccumulation has been experimentally confirmed. We aimed to compare the patterns of metal (hyper)accumulation and genetic diversity among populations of B. laevigata subsp. laevigata in NE Italy.

None of the populations exhibited foliar hyperaccumulation of Cu, Zn, or Pb. The root-to-shoot accumulation rates for these metals were unchanged or decreased rather than enhanced in the metallicolous populations, in comparison with the non-metallicolous ones. Hyperaccumulation of Tl was confined to the population of the Cave del Predil mine. This population was genetically very distinct from the others, as demonstrated by AFLP-based cluster analysis. The two other mine populations did not surpass the threshold for Tl hyperaccumulation, but showed enhanced foliar Tl concentrations and root-to-shoot translocation rates, in comparison with the non-metallicolous populations. Genetic analysis suggested that adaptation to metalliferous soil must have been independently evolved in the metallicolous populations.  相似文献   


6.
Root system morphology was characterized in the seedlings of heavy-metal sensitive Arabidopsis thaliana, the non-metallicolous (NM) and metallicolous (M) populations of the tolerant A. arenosa and A. halleri, developed on the natural soils: the Zn-Pb-Cd-Cu-contaminated (C soils), the non-contaminated (NC soils), and on an identical nutrient-rich compost. Anatomy of primary roots grown on agar medium with control and elevated zinc concentrations was investigated also in the model A. thaliana ecotype Columbia.  相似文献   

7.
Mobilization of Selenite by Ralstonia metallidurans CH34   总被引:3,自引:0,他引:3       下载免费PDF全文
Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.  相似文献   

8.

Aims and background

We previously compared metallicolous (M) and non-metallicolous (NM) populations of Noccaea (=Thlaspi) caerulescens, Silene vulgaris, and Matthiola flavida for their abilities to tolerate and (hyper)-accumulate lead (Pb) in hydroponics. In the present study we aimed 1) to check the hyperaccumulation and tolerance abilities of these populations in controlled experiments using metalliferous soils, 2) to test the M. flavida M population for Zn and Cd hypertolerance in hydroponics.

Methods

Plants were grown in hydroponics and fertilized metalliferous substrates, collected from a Zn/Pb smelter sinter deposit near Plombières, Belgium (low pH, low Ca), and a tailing of the Irankouh Zn/Pb mine, Iran (high pH, high Ca). Metal tolerance was assessed from root growth inhibition in hydroponics, or mortality, stunting or chlorosis in the experiments with soil.

Results

Metallicolous M. flavida did not show hypertolerance or hyperaccumulation of Cd or Zn in hydroponics. Only one of the N. caerulescens M populations and the native S. vulgaris M population were able to grow in Plombières soil, whereas the others stopped growing or died within 40?days. All the populations survived and maintained growth for 40?days in Irankouh soil. When grown in Irankouh soil, the M population of M. flavida hyperaccumulated Pb. N. caerulescens hyperaccumulated Zn from Plombières soil, but not from Irankouh soil.

Conclusions

The M. flavida M population is non-Pb-hypertolerant. It hyperaccumulates Pb from Irankouh soil, but not from Pb-amended nutrient solution. N. caerulescens does not hyperaccumulate Zn from the calcareous Irankouh soil.  相似文献   

9.
Meerts  Pierre  Van Isacker  Nathalie 《Plant Ecology》1997,133(2):221-231
In continental Europe, the heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy-metal polluted soils (subsp. calaminare) and on soils with normal heavy metal content (subsp. caerulescens). In order to assess the extent and partitioning of variation in heavy metal tolerance and foliar mineral composition, twelve families from two populations of each subspecies were grown in pots in four soil treatments differing in heavy metal (Zn, Pb) and macronutrient concentrations. The two subspecies differed systematically in many respects. Subsp. calaminare had a higher survival at high levels of heavy metals and a higher tolerance index in all treatments. It also had three times lower foliar zinc and lead concentrations when grown at moderate levels of heavy metals. This, together with a negative correlation of foliar Pb concentration with growth in subsp. caerulescens, suggests that heavy metal accumulation per se is not a mechanism of tolerance in this species. Variation among families within populations accounted for a larger proportion of total variance in growth and mineral composition than variation between populations. Additionally, within population variation in heavy metal tolerance and accumulation was significantly lower in subsp. calaminare. This suggests that, adding to a background constitutive tolerance at the species level, natural selection has increased heavy metal tolerance in metallicolous populations of Thlaspi caerulescens.  相似文献   

10.
This present paper studies the response of Anthyllis vulneraria-Rhizobium symbiosis to heavy metal stress. The symbiotic rhizobium bacteria isolated from root nodules of A. vulneraria from zinc and lead wastes were examined in this project. Light microscopy (LM) and transmission electron microscopy (TEM) were used to analyze the nodule anatomy and ultrastructure and conduct a comparison with nonmetal-treated nodules. 16S ribosomal DNA sequence analysis of bacteria isolated from metal-treated nodules revealed the presence of Rhizobium metallidurans and Bradyrhizobium sp. In regard to heavy metal resistance/tolerance, a similar tolerance to Pb was shown by both strains, and a high tolerance to Zn and a lower tolerance to Cd and Cu by R. metallidurans, whereas a high tolerance to Cd and Cu and a lower tolerance to Zn by Bradyrhizobium were found. The nodules of Anthyllis from metal-polluted tailing sites were identified as the typical determinate type of nodules. Observed under TEM microscopy changes in nodules ultrastructure like: (1) wall thickening; (2) infection thread reduction; (3) vacuole shrinkage; (4) synthesis of phenolics in vacuoles; (5) various differentiation of bacteroids and (6) simultaneous symbiosis with arbuscular mycorrhiza fungi could be considered as a form of the A.vulneraria-Rhizobium symbiosis adaptation to metal stress.  相似文献   

11.
Restoration of metalliferous mine soils requires using plant species tolerant to high metal concentrations and adapted to nutrient‐poor soil. Legumes can increase plant productivity through N2‐fixation, but they are often scarce in metalliferous sites. We examined survival, growth, and tolerance of four populations of a legume, Anthyllis vulneraria, from two metalliferous (MET) Zn‐Pb mine sites, Avinières (AV) ([Zn‐EDTA] = 26,000 mg/kg) and Eylie (EY) ([Zn‐EDTA] = 4,632 mg/kg), and two non‐metalliferous (NMET) sites located in the south of France with the aim to select the most appropriate populations for restoration of mined soils. In a common garden experiment, plants from each population were reciprocally grown in soil from the provenance of each population. The two NMET populations exhibited high mortality and low growth rates in soil from the mined sites. The AV MET exhibited a high growth rate in metalliferous soils, but showed high mortality in non‐metalliferous soils. The growth of the EY MET was very low in the AV‐contaminated soil, but was the highest of all populations in moderately and non‐metalliferous soils. Plants from the AV MET population showed a high growth and survival in metalliferous soil and would be appropriate in the restoration of metal‐contaminated sites (>30,000 mg Zn kg?1). The EY MET population would be adapted to the restoration of moderate metal‐contaminated soils (<30,000 mg Zn kg?1). Taking into account the broad distribution of A. vulneraria, these two populations could be suitable for the restoration of derelict mine sites in mediterranean and temperate regions of Europe and North America.  相似文献   

12.

Background and aims

Aleppo pine (Pinus halepensis Mill.) is a widely used species for restoring degraded semiarid areas, but its use for the revegetation of metal(loid) polluted soils has not been thoroughly investigated. The main goal of this research was to study the ecophysiological status and elemental composition of spontaneous populations of Pinus halepensis growing on mine tailings to assess their use in phytomanagement of mine spoils in semiarid climates.

Methods

Edaphic characteristics and the physiological (by stable isotopes) and nutritional status of pine trees were determined on mine tailings, in the metalloid-polluted surroundings and a non-polluted control area.

Results

Low soil phosphorus availability at the tailings was found to be a more important limiting factor for pine physiological performance than high soil metal(lloid)s concentrations. Foliar phosphorus concentrations showed a strong negative correlation with foliar sulphur concentrations along the studied transect. The carbon and oxygen isotopic composition (δ13C and δ18O) of pine needles indicated that trees at the tailings were less water stressed than those in surroundings or control areas. The low foliar δ15N of pines growing at the tailings was due to low soil fertility and/or a heavy reliance on symbiotic ectomycorrhizal fungi for nitrogen uptake.

Conclusions

The results of this study indicate that Pinus halepensis is a suitable tree species for the phytostablisation of neutral or slightly-alkaline mining wastes in semiarid environments, thanks to its drought hardiness and good adaptation to low soil fertility and salinity.  相似文献   

13.
五节芒对重金属污染土壤微生物生物量和呼吸的影响   总被引:6,自引:0,他引:6  
选择3个五节芒在重金属污染地的定居点作为研究样地,其中两个为Pb/Zn矿尾矿砂堆积地(W:黄岩铅锌尾矿;Y:三门铅锌尾矿),一个为冶炼厂附近污染农田(N),分别测定其根围与根际土壤微生物基础呼吸、微生物量碳、微生物量氮、土壤理化特性和土壤重金属含量.结果表明:根际土壤微生物基础呼吸和微生物量氮均显著地高于根围土壤(P<0.05),除了N样地外,微生物量碳在根围与根际之间差异不显著(P>0.05).根际土壤有机碳、总氮(Y样地除外)和离子交换量(N样地除外)低于根围土壤.根际重金属(Pb、Zn、Cu、Cd)总量与DTPA(二乙三胺五乙酸)可提取量普遍低于根围土壤.冗余分析(RDA)表明,根围和根际土壤微生物与土壤理化特性呈不同程度的正相关,而与土壤重金属含量呈现不同程度的负相关.主分量及回归分析同样证明土壤微生物总体变化与土壤理化特性呈正相关(根围R2=0.653;根际R2=0.690),而与重金属含量呈负相关(根围R2=0.610;根际R2=0.662).  相似文献   

14.
重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征   总被引:17,自引:0,他引:17  
黄小娟  江长胜  郝庆菊 《生态学报》2014,34(15):4201-4211
对重庆溶溪锰矿尾渣堆积区土壤、优势植物以及周边农田土壤的重金属含量(Mn、Cd、Cu、Zn和Pb)进行测定分析,并以重庆市土壤背景值为评价标准,应用Hakanson潜在生态危害指数法对土壤中重金属的潜在生态危害进行了评价。结果表明:该锰矿尾渣堆积区土壤中Mn、Cd、Cu、Zn和Pb的平均含量分别为48382.5、3.91、79.97、131.23和80.68 mg/kg,受到Mn、Cd的严重污染,Mn为强或很强生态危害,Cd为极强生态危害,而Cu、Zn、Pb为轻微生态危害,各尾矿渣堆积区的综合潜在生态危害指数(RI)均远大于720,为极强生态危害。对优势植物重金属含量的分析显示,绝大部分植物地上部Mn、Cd含量都超出正常范围的上限值,而Cu、Zn和Pb含量基本都在正常范围内;根据植物对重金属的吸收特征,将植物分为三类:将重金属主要累积于地上部分的富集型,如垂序商陆(Phytolacca americana L.)和酸模叶蓼(Polygonum lapathifolium Linn.),适用于重金属复合污染土壤的植物修复;将重金属主要累积于根部的根部囤积型,如芒(Miscanthus sinensis Anderss.)和乌蕨(Stenoloma chusanum Ching);重金属含量较低的规避型,如黄花蒿(Artemisia annua L.)、长波叶山蚂蝗(Desmodium sequax Wall.)及钻形紫苑(Aster subulatus Michx.);后两种类型的植物可种植在重金属污染严重且使用价值相对较低的矿山废弃地上,同时规避型植物对于研究植物的重金属排斥机理具有重要价值。溶溪锰矿区周边农田土壤主要受到Cd的严重污染,Cd为很强或极强生态危害。  相似文献   

15.
This study investigates the genetic differentiation within the Central European Armeria maritima (Mill.) Willd. complex with special reference to the metallicolous populations using AFLP markers. Our sampling comprised all metallicolous (ssp. halleri, hornburgensis, bottendorfensis, eifeliaca, calaminaria), and non-metallicolous taxa (ssp. maritima, elongata, alpina). Geographical and genetic distances between populations were moderately positively correlated. Genetic variability of metallicolous and non-metallicolous populations was not significantly different. Lowland populations were clearly differentiated from the alpine populations. Within the lowland group metallicolous and non-metallicolous populations were not genetically differentiated. All lowland populations show a regional differentiation and close relationships to ssp. elongata. Thus, the metallicolous taxa should not be maintained as subspecies. Likewise, their treatment as varieties of a ssp. halleri s.l. is critical because this taxon cannot be consistently characterized throughout its geographical range and may be an artefact itself. If a taxonomical recognition should be considered necessary it is advisable to treat the microendemics as varieties of ssp. elongata.  相似文献   

16.
Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson’s correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of ?0.775, P < 0.001).  相似文献   

17.
The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.  相似文献   

18.
Li  Yang  Sun  Qingye  Zhan  Jing  Yang  Yang  Wang  Dan 《Applied microbiology and biotechnology》2017,101(6):2549-2561

Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0–40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10–40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.

  相似文献   

19.
We have analyzed the relationship between total Zn, Pb and Cu concentrations in the soil and the capacity of three plant species to accumulate these elements in their leaves. The study was carried out in a highly contaminated area at Sulcis-Iglesiente (SW-Sardinia, Italy). We took samples of the leaves of Dittrichia viscosa, Cistus salviifolius and Euphorbia pithyusa subsp. cupanii and samples of the soil beneath each of them at depths of 0-30 and 30-60 cm, both in contaminated mine tailings and surrounding areas. Due to the anthropic origin of the soil materials the results varied considerably. Bioavailability of trace elements was mainly related to the calcium-carbonate content and the crystalline and amorphous forms of iron in the soil. The concentration of Zn in the leaves of the three plant species studied was highest, followed by Pb and finally Cu. The leaves of Dittrichia viscosa contained the highest concentrations of trace elements and this species may be considered as being a “phytoextractor” in soils where the trace-element concentrations are not too high. Euphorbia pithyusa subsp. cupanii had low trace-element concentrations in its leaves despite growing in highly contaminated soils, and so might be used as a “phytostabilizer”. Although Cistus salviifolius does not grow in the most contaminated soils, could be considered as a contamination indicator up to a given level.  相似文献   

20.
《Genomics》2023,115(2):110579
Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号