首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frequency characteristics of motor responses evoked by stimulation of the motor cortex by amplitude- and frequency-modulated stimulus sequences were investigated in chronic experiments on unanesthetized cats. The variable component of evoked muscular contraction was studied. Frequency characteristic curves were plotted by the harmonic linearization method. Transformation of controlling signals in the motor system was shown to take place by low-frequency filtration and to be characterized by nonstationary, nonlinear, and frequency-dependent properties. Phase delay of the principal harmonic of the variable component of evoked muscular contraction was minimal at a frequency of 0.2 Hz and it varied in different experiments from 40 to 90°. The increase in the phase delay and decline of the amplitude-frequency characteristic curves were particularly marked if the frequency exceeded 1–2 Hz. The mean phase delay at a frequency of 5 Hz was about 108°; the mean slope of the amplitude characteristic curves in the 2–10 Hz region was –12 dB/decade. It is suggested that definite correlation between the dynamic properties of the motor system may be determined, in particular, by the adaptive properties of the spike discharge of neurons concerned in the transmission of motor command signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 571–579, November–December, 1980.  相似文献   

2.
3.
Postsynaptic potentials (PSPs) of 83 neurons in the motor cortex of unanesthetized cats in response to electrodermal, photic, and acoustic stimulation were investigated by intra-and quasi-intracellular recording methods. Most cells responded to stimulation of at least one limb. About 60% of neurons of the posterior and over 75% of neurons of the anterior sigmoid gyrus responded to stimulation of two (or more) limbs. In 29 of 39 neurons of the anterior and 12 of 44 of the posterior sigmoid gyrus PSPs with a short (less than 50 msec) and stable latent period were evoked by flashes and clicks. On presentation of two somesthetic stimuli complete blocking (if the interval was less than 30–60 msec) or weakening (interval 30–200 msec) of responses to the second (testing) stimulus was observed. On presentation of paired photic (or acoustic) stimuli or paired stimuli of different modalities at various intervals from 0 to 100 msec, the testing response was often potentiated. The character of the responses and their interaction thus differed from those obtained under chloralose anesthesia [6, 7]. It is postulated that under the action of chloralose a system of neurons with strong excitatory feedback is formed in the motor cortex which may respond to stimuli of different modalities by something resembling the "all or nothing" principle.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 563–573, November–December, 1971.  相似文献   

4.
Local stimulation in the zone of motor representation of the cat hind limb in the postcruciate cortex (area 4) modulates afferent activity of flexor spindles of the foot. An initial pause, connected with contraction of extrafusal fibers, is observed in this activity. After the muscle has returned to its original length, a sharp rise of discharge frequency develops followed by a return to its initial level. Similar phases, but less marked, are observed in secondary afferents. Stimulation of contralateral and ipsilateral regions of the medial precruciate cortex (area 6) causes selective, intensive, and prolonged facilitation of discharge of type Ia units followed by an after-effect, without involving extrafusal muscle fibers. Since influences of the premotor supplementary cortex on lumbar gamma motoneurons are relatively independent of influences coupled with activation of the alpha system on muscle afferents from the motor cortex, a specific role of area 6 in the regulation of segmental excitability of the gamma system can be postulated.  相似文献   

5.
It is shown that in nembutal anesthetized cats, a single stimulation of motor cortex (MC) causes a response in lateral geniculate nucleus (LGN). The development of this response had a conditioning effect on the LGN response evoked by stimulation of the contralateral superior colliculus (SC), markedly inhibiting it. The degree of this inhibition depended on the time interval between the cortical conditioning stimulation and the tectal test stimulation. A single conditioning MC stimulation did not noticeably change the LGN responses evoked by a light stimulus, but markedly inhibited visual responses from deep SC layers (those regions which on stimulation gave rise to LGN responses). From the results, it is suggested that the MC monitors the execution of tectal influences on LGN function at the tectal level rather than the geniculate level, and it is precisely by this means that it regulates saccadic suppression of LGN function, in the realization of which, as presumed earlier, the SC takes part.A. I. Karaev Institute of Physiology, Azerbaijan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 4, July–August 1992.  相似文献   

6.
7.
8.
9.
10.
Using the same experimental prodedure as we employed in the previous paper [5], extension and flexion cortically-evoked movements (CEM) about the elbow joint have been analyzed in unanesthetized cats by an external load disturbance method (ELD). These movements were evoked by intracortical microstimulation (ICMS) of the motor cortex. A combined quantitative analysis has been made of extension and flexion CEM and also motor reactions evoked by direct stimulation of the muscle antagonists, in unanesthetized animals. Determinations were made of the resulting stiffness at different stages of two sequential oppositely directed cycles of change in the external load, and of the uncertainty index (UI) of the disturbed movements. Depending on the relationship between the directions of the preceding and the disturbed movement, the CEM in the cyclical backwards and forwards external load changes were divided into two types: coincident (type 1), and opposite (type 2). If the preceding movement was evoked by ICMS, then disturbed movements (types 1 and 2) were a realization of phasic myotatic reflexes, the unloading and stretch reflexes, respectively. Type 1 disturbed movements are characterized by a rather narrow range of variation of the mean UI values (0.43–0.91 and 0.24–0.73 for frequencies of disturbance 1.2 and 3.2 Hz, respectively). The transition to type 2 CEM brought about a sharp increase in the scatter of mean UI values; they could be positive or negative, and the dispersion also increased significantly. It is suggested that the intensity of central processes of regulation of a disturbed movement are connected not so much with its continuous development, as with changes in its direction.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 330–339, May–June, 1992.  相似文献   

11.
A previously reported central neural respiratory control process was restudied in unanesthetized decerebrate cats during spontaneous breathing, and during conditions of constant chemical stimulation where phrenic nerve activity was used to quantitate respiratory output. Respiration was increased by carotid sinus nerve stimulation. The pattern of respiration was examined at the cessation of such stimulation. In spontaneously breathing animals, active hyperventilation (HV) was followed by hyperpnea for up to 30 s and never by apnea. Passive HV was always followed by apnea. In animals with controlled chemical conditions, the transient at the end of stimulation consisted of two components, the first an immediate decrease in respiratory output and the second a slow decrease with a period of over 5 m. It is suggested that a facilitatory feedback process, probably located in the reticular activating system, maintains respiratory output for some time after cessation of a stimulus. This study duplicates the results of previous studies and shows that no area of the brain above the pons is required for the mechanism's operation.  相似文献   

12.
The characteristics of extra- and intracellular responses of neurons in the AI region were studied in experiments with unanesthetized cats. It was established that auditory cortex neurons with similar best frequencies showed different forms of responses to tones of the corresponding frequency. About 40% of the auditory cortex neurons generated on responses to tone presentation. On — off and off responses were found in 27% of the neurons. Cortical neurons (27%) in which stimulation or inhibition of impulse discharge persisted throughout tone action were assigned to the tonic type group of cells. Approximately 6% of neurons in the AI region did not respond to a tone. During intracellular recording about 85% of the neurons responded to the turning on and/or off of a tone by generating an action potential followed by an IPSI. In 96% of the cortical neurons studied the IPSPs were a constant component of the intracellular responses to a tone. It is concluded that the inhibition of the impulse activity of the given neurons is of primarily a postsynaptic origin. Neurons showing one or another form of response differ from one another in the relative intensity and time characteristics of excitatory and inhibitory processes interacting on their postsynaptic membranes. In neurons of the phasic type inhibitory processes are dominant over excitatory, while excitatory processes are predominant in neurons of the tonic type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 500–508, July–August, 1985.  相似文献   

13.
14.
15.
16.
Activity was recorded from neurons belonging to the representation of the forelimb in the motor cortex (sulcus cruciatus, L 7–9 mm) using multiple multi-channel/barrel electrodes during acute experiments on cats. Cross-correlation analysis of impulse trains was adopted to investigate dynamics of interneuronal connections during passive flexion and electrical stimulation of the limb contralateral to the recording site. It was found that neither passive bending nor electrical stimulation of the limb leads to a significant increase in the total number of direct relationships between cortical neurons. At the same time, passive flexion does produce a considerable decrease in the number of instances of both inputs operating in neighboring neurons (50–100 µm apart) and an increase in cells located further (between 100 and 400 µm) apart. Some increase in the number of direct inhibitory interactions between neighboring neurons was observed during electrical stimulation.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Nentskii Institute of Experimental Biology, Warsaw, Poland. Center of Experimental and Clinical Medicine, Warsaw, Poland. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 73–80, January–February, 1991.  相似文献   

17.
In awake cats single realizations of acoustic evoked responses (AER) from temporal, parietal and frontal cortex were registered and compared with averaged responses obtained by means of optic superposition of the same realizations. It is shown that the composition of these different realizations considerably varies due to inconstancy of manifestation of each component. The fact that the preceding component falls out does not exclude manifestation of the following one, which proves the functional independence of the mechanisms producing each component. The simultaneous registration of single realizations of AERs of different cortical areas shows that the reactions of frontal and parietal areas are independent of AERs of the temporal cortex.  相似文献   

18.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

19.
20.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号