首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of drought and the diurnal changes in photosynthetic electron transport were studied in non-nodulated plants of Casuarina equisetifolia. The induction of fluorescence showed a slightly higher I step in water-stressed than control plants, and the time from the start of irradiation to the P step of induction was significantly shortened by drought. The quantum efficiency of photosystem 2 (PS2) in the dark-adapted state (Fv/Fm) was generally not affected by drought, whereas it decreased during the central hours of the day. The decrease in quantum yield of PS2 electron transport (2) in water-stressed plants was associated with decreases in the photochemical efficiency of open (oxidised) PS2 centres (Fv'/Fm') and increases in non-photochemical quenching (qN) rather than with increased closure of PS2 centres (lowered photochemical quenching, qP). In contrast, the changes in quantum yield of electron transport during the day were related to changes in qP rather than in Fv'/Fm'. When chlorophyll fluorescence was measured at the same irradiance during the day, a greater qN was observed at the end of the drying cycle than after watering, and early and late in the photoperiod than in the central hours of the day. The greater qN at the beginning and end of the day did not prevent an increase in energy not used photochemically nor dissipated non-photochemically. Drought did not affect this excess of photon energy.  相似文献   

2.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

3.
Genoud  C.  Coudret  A.  Amalric  C.  Sallanon  H. 《Photosynthetica》1999,36(1-2):243-251
Rosa hybrida plantlets were rooted on solid sucrosed medium (MS) under an irradiance (PPFD) of 45 μmol m-2 s-1 or on liquid hydroponic solution (MH) at 100 μmol m-2 s-1. Then all plantlets were acclimated without sucrose under 100 μmol m-2 s-1 PPFD. After 7 d in rooting stage, the ratio of variable over maximal chlorophyll fluorescence (Fv/Fm) was significantly higher for plants grown in MH than in MS and hence the higher irradiance at this stage of growth had no photoinhibitory effect. The radiant energy was used by the photochemical process and also by photoprotective mechanisms of photosystem 2, expressed by increases in the rates of electron flux, net photosynthesis, and non-photochemical quenching. This effect on Fv/Fm was maintained during three weeks in acclimation phase. The resistance of plantlets increased as new leaves formed, and after six weeks in acclimation, there was no difference between the two conditions. The study under higher irradiance (100, 150, or 300 μmol m-2 s-1) indicated that photoinhibition might take place at 300 μmol m-2 s-1 whatever the growth conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2002,40(4):635-639
The optimum temperature for photosynthetic CO2 assimilation of A. mangium phyllodes was 30–32 °C. Photosystem 2 (PS 2) exhibited high tolerance to high temperature. Gas exchange and the function of PS2 of A. mangium were adapted to the temperature regime of the tropical environment and this might be the contributing factor to their fast growth under tropical conditions.  相似文献   

5.
Ducruet  J.M. 《Photosynthetica》1999,37(2):335-338
F0 fluorescence and thermoluminescence (TL) were recorded simultaneously on various dark-adapted leaf samples. Above 40 °C, a sharp peak of TL coincided with the onset of the heat-induced F0 rise. It results from a back-transfer of an electron from the secondary QB -to the primary acceptor QA of photosystem 2, followed by a luminescence-emitting recombination with Tyr-D1. This demonstrates that the critical temperature at which the F0 starts rising also corresponds to a shift towards the left of the QA↔QB - equilibrium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Roháček  K. 《Photosynthetica》2002,40(1):13-29
Chlorophyll fluorescence parameters (Chl FPs) derived from the slow (long-term) induction kinetics of modulated Chl a fluorescence are reviewed and analysed with respect to their application in photosynthesis research. Only four mutually independent Chl FPs, calculated from values of five essential Chl fluorescence (ChlF) yields, are distinguished as the basic ones. These are: the maximum quantum yield of PS2 photochemistry (P O), the photochemical quenching of variable ChlF (qP), the non-photochemical quenching of variable ChlF (qN), and the relative change of minimum ChlF (qO). P O refers to the dark-adapted state of a thylakoid membrane, qP, qN and qO characterise the light-adapted state. It is demonstrated that all other Chl FPs can be determined using this quartet of parameters. Moreover, three FPs related to the non-radiative energy dissipation within thylakoid membranes are evaluated, namely: the non-photochemical ChlF quenching (NPQ), the complete non-photochemical quenching of ChlF (qCN), and the effective quantum yield of non-photochemical processes in PS2 (N). New FPs, the total quenching of variable ChlF (qTV) and the absolute quenching of ChlF (qA) which allow to quantify co-action of the photochemical and non-photochemical processes during a light period are defined and analysed. The interpretation of Chl FPs and recommendations for their application in the photosynthesis research are also given. Some alternative FPs used in the laboratory practice have only an approximate character and can lead to incorrect conclusions if applied to stressed plants. They are reviewed and compared with the standard ones. All formulae and conclusions discussed herein are verified using experimental values obtained on young seedlings of the Norway spruce (Picea abies [L.] Karst.).  相似文献   

7.
Pulse modulated fluorescence has increasingly been used as an ecological tool to examine changes in the vertical distribution of microphytobenthic cells within the upper layers of estuarine sediments (most often using the minimum fluorescence yield F(o)) as well as to indicate the health of the community (using the maximum PS II quantum efficiency F(v)/F(m)). However, the practicalities of in situ measurements, often dictates that short dark adaptation periods must be used ( approximately 15 min). The use of far-red light as an alternative to dark adaptation was investigated in natural migratory microphytobenthic biofilms and artificial non-migratory biofilms. Prolonged periods of darkness ( approximately 24 h) were not adequate to achieve 'true' measurements of F(o) and F(v)/F(m), which require complete oxidation of Q(A) and full reversal of non-photochemical quenching (NPQ). In some instances, stable values were only achieved using far-red light. Prolonged exposure to dark/far-red light led to a downwards migration of cells in natural assemblages, as seen by a reduction in both F(o) and the maximum fluorescence yield (F(m)). In non-migratory biofilms, F(m) increased in the dark and far-red treatments, indicating a reversal of NPQ, whereas F(o) decreased in far-red light but increased in the dark. It is suggested that far-red light and darkness differentially affected the balance between NPQ reversal and Q(A) oxidation that lead to the measured F(o) yield. The use of far-red light as an alternative to dark adaptation is discussed and the implications of short (e.g., 15 min) dark adaptation times used in situ are discussed with reference to the vertical migration of cells within sediment biofilms.  相似文献   

8.
Calatayud  A.  Iglesias  D.J.  Talón  M.  Barreno  E. 《Photosynthetica》2004,42(1):23-29
Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration.  相似文献   

9.
Although populations of cyanobacteria are usually considered to be clonal, their capacity to survive environmental changes suggests intrapopulation genetic variation. We therefore estimated the genetic variability on the basis of two processes important for any photoautotroph - photochemical and nonphotochemical quenching - as well as photosynthetic pigment concentrations. For this purpose, two parameters related to photochemical and nonphotochemical quenching were measured using specific experimental and statistical procedures, in 25 strains of the cyanobacterium Microcystis aeruginosa, along with their contents of chlorophyll a, total carotenoids and phycocyanin. The experimental procedure allowed discrimination between genetic and nongenetic (or residual) variability among strains. The high genetic variability found in photosynthetic pigments and both photosynthetic parameters denotes large differences even among strains isolated from the same community. The high genetic diversity within a population could be important for the evolutionary success of cyanobacteria.  相似文献   

10.
To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl--D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.  相似文献   

11.
Pheophytin and chlorophyll extracted from oxygen-evolving photosystem II particles, chloroplast thylakoids and cyanobacterial cells were separated by column chromatography with DEAE-Toyopearl, and quantitatively determined by spectrophotometry. The molecular ratio of chlorophyll a+b to pheophytin a was about 100 in spinach photosystem II particles and about 140 in spinach thylakoids. Using flash spectrophotometry of P680 and measurement of flash-induced oxygen yield, the molecular ratio of the chlorophyll to the photochemical reaction center II was determined to be about 200 in the photosystem II particles. These findings suggest that the stoichiometry in photosystem II particles is one reaction center II and two pheophytin a molecules per about 200 chlorophyll molecules. The same stoichiometry for pheophytin to the reaction center II was obtained in the cyanobacteria, Anacystis nidulans and Synechocystis PCC 6714. A quantitative determination of pheophytin a and the electron donor P700 in stroma thylakoids from pokeweed suggests that photosystem I does not contain pheophytin.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

12.
Costa  E.S.  Bressan-Smith  R.  Oliveira  J.G.  Campostrini  E. 《Photosynthetica》2003,41(1):77-82
Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 mol m–2 s–1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates.  相似文献   

13.
The effect of water deficit on chlorophyll fluorescence, sugar content, and growth parameters of strawberry (Fragaria×ananassa Duch. cv. Elsanta) was studied. Drought stress caused significant reductions in leaf water potential, fresh and dry masses, leaf area, and leaf number. A gradual reduction of photochemical quenching (qP) and quantum efficiency (ΦPS2) was observed under drought stress while non-photochemical quenching (qN) increased. Maximum efficiency of photosystem 2 (Fv/Fm) was not affected by drought stress.  相似文献   

14.
Calatayud  A.  Alvarado  J.W.  Barreno  E. 《Photosynthetica》2001,39(4):507-513
Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar.  相似文献   

15.
In artificial phospholipid bilayers, dual measurements of laurdan steady-state anisotropy and emission spectra can be used to identify the presence of liquid ordered phases. Human erythrocytes were used as a model to test whether similar measurements could be applied to biological samples. Specifically, laurdan anisotropy and emission spectra were obtained from native erythrocytes before and after treatment with calcium ionophore and from the microvesicles (known to be enriched in liquid ordered domains) shed from the cells during calcium entry. Spectral and anisotropy data were consistent with an increased order and reduced fluidity of erythrocyte membrane lipids upon ionophore treatment. Microvesicle membranes appeared more ordered than native erythrocytes and similar to ionophore-treated cells based on laurdan emission. In contrast, the anisotropy value was lower in microvesicles compared to ionophore-treated cells, suggesting greater probe mobility. Parallel measurements of diphenylhexatriene anisotropy corroborated the laurdan data. These results were consistent with the liquid ordered property of microvesicle membranes based on comparisons to behavior in artificial membranes. Two-photon microscopy was used to examine the distribution of laurdan fluorescence along the surface of erythrocyte membranes before and after ionophore treatment. A dual spatial analysis of laurdan anisotropy, as revealed by the distribution of laurdan emission spectra, and intensity excited by polarized light suggested that the plasma membranes of ionophore-treated erythrocytes may also exhibit elevated numbers of liquid ordered domains.  相似文献   

16.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

17.
A portable Chi fluorescence imaging system was used to characterise nonuniform Chi fluorescence quenching in Abutilon striatum leaves infected with phloem-localised abutilon mosaic virus. The instrument was used to observe fluorescence emission at intervals during induction transients, and to map nonphotochemical quenching during saturating pulses applied in the course of these transients. Two symptom types were distinguished: yellow vein-associated motifs that showed lower maximum Chi fluorescence than nearby green tissues, but virtually zero nonphotochemical quenching, and vein-defined mosaics (pale green) that initially showed normal maximum Chi fluorescence but strongly impaired nonphotochemical quenching. Mature vein-defined mosaics (yellow to white areas) resembled vein-associated symptoms with zero nonphotochemical quenching. Islands of apparently healthy green tissue enclosed by mosaic symptoms showed slower nonphotochemical quenching than controls. Possible effects of localised carbohydrate accumulation, thought to follow from infection by the phloem-limited virus, on photosynthetic processes as well as the synthesis and stability of chloroplast protein complexes, are discussed in the context of symptom development.  相似文献   

18.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P N) for the both studied plant species was inhibited at 8 °C. P N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to P N. Measurements of ΦPS2CO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2CO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance.  相似文献   

19.
珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭   总被引:2,自引:0,他引:2  
用PAM2000 型荧光仪和754 型分光光度计观测了珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭快、中和慢3 个组分(qNf,qNm 与qNs) 和505 nm 光吸收的日变化。主要结果如下:(1) 中午,珊瑚树叶片的qNs 比qNf 大得多,而大豆叶片的这两个参数却几乎处于同一水平。它们的qNm 虽然也随光强变化,但与qNs 和qNf 相比,除早晨和傍晚以外全天的水平都是最低的。(2) 珊瑚树叶片的初始荧光水平(Fo) 中午最低,而大豆叶片的Fo 中午最高。(3) 饱和光照射引起的珊瑚树叶片505 nm 光吸收的增加比大豆叶片大得多。(4) 珊瑚树叶片505 nm 光吸收的日变化方式与qNs 的相类似。(5) 叶黄素循环的抑制剂DTT对珊瑚树叶片qNs 的抑制(57 % ) 比对大豆叶片qNs 的抑制(23 % ) 严重。  相似文献   

20.
Watermelon (Citrillus lanatus) plants were grown for two consecutive years in open-top chambers with three different ozone concentrations (O3-free air, O3 ambient, and air with additional O3; CFA, NFA, and NFA+O3) and three nitrogen fertilizer concentrations [0, 14.0, and 29.6 g N per pot; N0, N1, and N2). There was an interaction between ozone and N fertilizer for the major parameters studied. O3 and N2 treatments led to a significant decrease in maximum efficiency of photosystem 2 (PS2) photochemistry (Fv/Fm), and induced a significant decrease in the actual quantum yield of PS2 (ΦPS2), due mainly to the increased closure of PS2 reaction centres (qP) and to an increase in the non-photochemical quenching (NPQ). On the other hand, these plants exhibited an increased susceptibility to photoinhibition, which could be associated with an increased fraction of reduced QA. An increase in lipid peroxidation indicated that damage was occurring at the membrane levels. High N concentration enhanced the detrimental effects of ozone on the fluorescence parameter induction and lipid peroxidation. All these negative alterations led to a decreased yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号