首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of Alzheimer's amyloid beta-peptide with cyclodextrins were studied by (1)H NMR: the translational diffusion coefficient of the peptide and chemical shift changes were studied by the presence of variable concentrations of cyclodextrins. For the full-length peptide, Abeta(1-40), the combined results of translational diffusion and chemical shift changes are consistent with a model where aromatic side chains interact with beta-cyclodextrin with dissociation constants in the millimolar range. The diffusion data were consistent with two beta-cyclodextrin molecules bound per peptide. The binding occurs at two sites, at F(19) and/or F(20) and at Y(10), with dissociation constants K(d)(F) = 4.7 mM and K(d)(Y) = 6.6 mM, respectively, in 10 mM sodium phosphate, pH 7.4 and 298 K. Shorter Alzheimer peptide fragments were studied to measure specific affinities for different binding sites. The N-terminal fragment Abeta(1-9) with a putative binding site at F(4) does not show measurable affinity for beta-cyclodextrin. The fragment Abeta(12-28) has similar apparent affinity (K(d) = 3.8 mM) to beta-cyclodextrin as the full-length peptide Abeta(1-40). Here, the diffusion data suggests a one-to-one stoichiometry, and the binding site is F(19) and/or F(20). Both diffusion results and chemical shift changes give the same affinity. A variant Abeta(12-28)G(19)G(20) without phenylalanines does not bind to beta-cyclodextrin. Other potential ligands, alpha-cyclodextrin, gamma-cyclodextrin, nicotine, and nornicotine do not bind to the Abeta(12-28) fragment. This study shows that combined (1)H NMR diffusion and chemical shift changes may be used to quantitatively determine affinities and stoichiometries of weak interactions, using unlabeled ligands and hosts of comparable sizes.  相似文献   

2.
Two mono-substituted beta-cyclodextrins and two bridged bis-beta-cyclodextrins, that is, mono(6-(2-aminoethylamino)-6-deoxy)-beta-cyclodextrin (1), mono(6-(2-(2-aminoethylamino)ethylamino)-6-deoxy)-beta-cyclodextrin (2), ethylene-1,2-diamino bis-6-(6-deoxy-beta-cyclodextrin) (3), and iminodiethylene-2,2'-diamino bis-6-(6-deoxy-beta-cyclodextrin) (4), were prepared from beta-cyclodextrin. Their binding ability with bovine serum albumin as a model protein was investigated through proton magnetic resonance (1H NMR), ultraviolet visible spectroscopy (UV-vis), circular dichroism (CD), and fluorescence spectroscopy. In the 1H NMR spectra of the modified cyclodextrins, the resolution of proton signals decreases after the addition of BSA. From the UV and CD spectra, it is found that both the UV absorption and the alpha-helix content of BSA increase with the concentration of the modified cyclodextrins. The protein-ligand interactions cause a fluorescence quenching. The quenching constants are determined using the Stern-Volmer equation to provide an observation of the binding affinity between modified cyclodextrins and BSA. All these results indicate that the modified cyclodextrins can interact with BSA and the bridged bis(beta-cyclodextrin)s (3 and 4) have much stronger interactions than the mono-substituted beta-cyclodextrins (1 and 2). The strong binding stability of bis-cyclodextrins should be attributed to the cooperative effect of two adjacent cyclodextrin moieties. Job's plot shows that the complex stoichiometries of BSA to the modified cyclodextrins were 1:4 for 1 and 2, as well as 1:3 for 3 and 4, respectively.  相似文献   

3.
Crystals of the mutant E354A of Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) complexed with beta-cyclodextrin were prepared by a soaking method, and the diffraction data were collected at 100 K, using Synchrotron radiation (SPring-8). The crystals belong to an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions a = 111.1 A, b = 117.7 A, c = 113.3 A, which is almost isomorphous with crystals of the wild-type TVAII, and the structure was refined to an R-factor = 0.208 (R(free) = 0.252) using 3.0 A resolution data. The refined structure shows that the interactions between Phe286 and two C6 atoms of beta-cyclodextrin at the hydrolyzing site are important for TVAII to recognize cyclodextrins as substrates. This observation from the X-ray structure was supported by kinetic analyses of cyclodextrins using the wild-type TVAII, the mutant F286A and F286L. These studies also suggested that the TVAII-hydrolyzing mechanism for cyclodextrins is slightly different from that for starch.  相似文献   

4.
The inclusion complexation behavior of azadirachtin with several cyclodextrins and their methylated derivatives has been investigated in both solution and the solid state by means of XRD, TG-DTA, DSC, NMR, and UV-vis spectroscopy. The results show that the water solubility of azadirachtin was obviously increased after resulting inclusion complex with cyclodextrins. Typically, beta-cyclodextrin (beta-CD), dimethyl-beta-cyclodextrin (DMbetaCD), permethyl-beta-cyclodextrin (TMbetaCD), and hydroxypropyl-beta-cyclodextrin (HPbetaCD) are found to be able to solubilize azadirachtin to high levels up to 2.7, 1.3, 3.5, and 1.6 mg/mL (calculated as azadirachtin), respectively. This satisfactory water solubility and high thermal stability of the cyclodextrin-azadirachtin complexes, will be potentially useful for their application as herbal medicine or healthcare products.  相似文献   

5.
Structural background of cyclodextrin-protein interactions   总被引:2,自引:0,他引:2  
Cyclodextrins are cyclic oligosaccharides with the shape of a hollow truncated cone. Their exterior is hydrophilic and their cavity is hydrophobic, which gives cyclodextrins the ability to accommodate hydrophobic molecules/moieties in the cavity. This special molecular arrangement accounts for the variety of beneficial effects cyclodextrins have on proteins, which is widely used in pharmacological applications. We have studied the interaction between beta-cyclodextrin and four non-carbohydrate-binding model proteins: ubiquitin, chymotrypsin inhibitor 2 (CI2), S6 and insulin SerB9Asp by NMR spectroscopy at varying structural detail. We demonstrate that the interaction of beta-cyclodextrin and our model proteins takes place at specific sites on the protein surface, and that solvent accessibility of those sites is a necessary but not compelling condition for the occurrence of an interaction. If this behaviour can be generalized, it might explain the wide range of different effects of cyclodextrins on different proteins: aggregation suppression (if residues responsible for aggregation are highly solvent accessible), protection against degradation (if point of attack of a protease is sterically 'masked' by cyclodextrin), alteration of function (if residues involved in function are 'masked' by cyclodextrin). The exact effect of cyclodextrins on a given protein will always be related to the particular structure of this protein.  相似文献   

6.
Capillary electrophoresis of highly sulfated flavanoids and flavonoids   总被引:1,自引:0,他引:1  
Flavanoids and flavonoids are natural products present in our diet and known to possess multiple biological activities. Sulfated species of these natural products represent highly charged water-soluble organic molecules that possess unique biochemical properties. We describe here the first studies on capillary electrophoresis of these highly charged molecules. Fully sulfated flavanoids and flavonoids can be electrophoresed and resolved under reverse polarity at pH 3.5 using 5-10 kV in less than 20 min. In contrast, at high pH under normal polarity these species can be electrophoresed only if a pressurized capillary is employed. (+/-)-Catechin sulfate, a racemic sulfated flavanoid, was resolved into its enantiomers using 15% beta-cyclodextrin, a chiral selector, but not with alpha- or gamma-cyclodextrins. Yet, the high charge density of these molecules challenges the resolving capability of capillary electrophoresis as diastereomers (-)-epicatechin sulfate and (+)-catechin sulfate do not resolve, even in the presence of cyclodextrins or chiral positively charged amino acids. Overall, capillary electrophoresis of highly sulfated flavanoids and flavonoids is expected to be useful in rapid structure analysis of sulfated flavonoids, either synthetic or natural.  相似文献   

7.
Cyclodextrin glycosyltransferase (EC 2.4.1.19, CGTase) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. Addition of small amounts (10% v/v) of polar organic solvents can affect both the overall production yield and the type of cyclodextrin produced from a maltodextrin substrate under simulated industrial process conditions. Using CGTase from Thermoanaerobacter sp. all solvents produced an increase in cyclodextrin yield when compared with a control, the greatest increase being obtained with addition of ethanol (26%). In addition product selectivity was affected by the nature of the organic solvent used: beta-cyclodextrin was favoured in the absence of any solvent and on the addition of dimethylsulphoxide, t-butanol and dimethylformanide while alpha-cyclodextrin was favoured by addition of acetonitrile, ethanol and tetrahydrofuran. With CGTase from Bacillus circulans strain 251 relatively smaller increases in overall cyclodextrin production were achieved (between 5-10%). Addition of t-butanol to a B. circulans catalysed reaction however did produce the largest selectivity for beta-cyclodextrin of any solvent-enzyme combination (82%). The effect of solvent addition was shown not to be related to the product inhibition of CGTase, but may be related to reduced competition from the intermolecular transglycosylation reaction that causes degradation of cyclodextrin products. This rate of this reaction was shown to be dependent on the nature of the organic solvent used.  相似文献   

8.
A bacterium that secreted cyclodextrin glucanotransferase (CGTase) in a medium overlaid with n-hexane was isolated and identified as Paenibacillus illinoisensis strain ST-12 K. The CGTase of the strain was purified from the culture supernatant. The molecular mass was 70 kDa. The enzyme was stable at pH 6 to 10 and active at pH 5.0 to 8.0. The optimum temperature at pH 7.0 was 65 degrees C in the presence of 5 mM CaCl2. The enzyme produced mainly beta-cyclodextrin. The total yield of alpha-, beta-, and gamma- cyclodextrins was increased 1.4-fold by the addition of ethanol. In particular, the yield of beta-cyclodextrins in the presence of 10% (vol/vol) ethanol was 1.6-fold that without ethanol. The CGTase was stable and active in the presence of large amounts of various organic solvents.  相似文献   

9.
Previous studies from this laboratory have demonstrated that low concentrations of cyclodextrins (<1.0 mm), when added to serum, act catalytically as cholesterol shuttles to accelerate the exchange of free cholesterol between cells and serum lipoproteins. As cholesterol shuttles, cyclodextrins have the potential to serve as pharmacological agents for modifying cholesterol metabolism. In the present study, we have quantitated the cholesterol-shuttling capacity of a series of newly synthesized beta-cyclodextrin derivatives (betaCDs), with varying structure, and two double-decker cyclophanes. The general protocol is as follows. [(3)H]cholesterol-labeled CHOK1 cells are incubated for 2 h with the test compounds alone or together with 5% human serum, and efflux of the cellular [(3)H]cholesterol is measured. As methyl beta-cyclodextrin (MbetaCD) served as the basis for comparison, initial experiments were conducted that demonstrated there was a dose-dependent stimulation of cell cholesterol efflux as the concentration of MbetaCD increased, with an EC(50) that was calculated to be 0.05 mm. To determine the cholesterol-shuttling capacity of the newly synthesized compounds, cell cholesterol efflux is measured when the compounds are present alone, at a concentration of 0.05 mm, or together with 5% human serum. Our results demonstrate that the double-decker cyclophanes are the most efficient cholesterol shuttles. Under our experimental conditions, methyl beta-cyclodextrin (MbetaCD) approximately doubles the efflux of cell cholesterol to serum, whereas one of the double-decker cyclophanes produces a 4-fold stimulation in efflux. Four of the beta-cyclodextrin derivatives (betaCDs) display shuttling ability similar to that of MbetaCD. Furthermore, there does not appear to be a structural pattern among the other betaCDs which could explain their shuttling capacity.  相似文献   

10.
It was found that 6-p-toluidinylnaphthalene-2-sulfonate (TNS) showed pronounced fluorescence enhancement when it was added to alpha-, beta-, and gamma-cyclodextrin solutions. 2. The following results were obtained by quantitative study of the interactions of three kinds of cyclodextrins with TNS by following TNS fluorescence at pH5.3. and 25 degrees. i) alpha-Cyclodextrin forms a l : l complex with TNS. ii) beta- and gamma-Cyclodextrins form 1 : 1 and also 2 : 1 complexes; in the latter two cyclodextrin molecules bind to one TNS molecule. iii) The dissociation constants of cyclodextrin-TNS complexes were determined to be 54.9 mM for alpha-cyclodextrin, 0.65 mM for beta-cyclodextrin and 0.66 mM for gamma-cyclodextrin in the 1 : 1 complex, and the secondary dissociation constants in the 2 : 1 complex were 71.4 mM for beta-cyclodextrin in the 1 : 1 complex, and the secondary dissociation constants in the 2 : 1 complex were 71.4 mM for beta-cyclodextrin and 32.6 mM for gamma-cyclodextrin. iv)...  相似文献   

11.
Liu Y  Li L  Zhang HY  Liang P  Wang H 《Carbohydrate research》2003,338(17):1751-1757
A novel bridged bis(beta-cyclodextrin) with a pyromellitic acid 2,5-diamide tether (2) has been synthesized by reaction of 6(I)-(2-aminoethyleneamino)-6-deoxycyclomaltoheptaose [mono 6-(2-aminoethyleneamino)-6-deoxy-beta-cyclodextrin] with 1,2,4,5-benzenetetracarboxylic dianhydride. Its inclusion complexation behavior with some representative dyestuffs, i.e., Acridine Red (AR), Rhodamine B (RhB), Neutral Red (NR), Brilliant Green (BG), was studied by using UV-absorption, fluorescence, and 2D NMR spectroscopy. Fluorescence titrations have been performed at 25 degrees C in pH 7.2 buffer solution to calculate the binding constants of resulting complexes. These results obtained indicated that bis(beta-cyclodextrin) 2 exhibits the strongly enhanced binding ability with all dye molecules examined compared with natural cyclodextrins. The binding modes of 2 with dye molecules have been deduced by 2D NMR experiments to establish the correlations between molecular conformations and binding constants of inclusion complexation. It is found that the improved binding ability and molecular selectivity of 2 could be attributed to double-cavity cooperative inclusion interaction and the size/shape matching between the host and guest.  相似文献   

12.
Prion diseases are fatal neurodegenerative disorders that are caused by the conversion of a normal host-encoded protein, PrP(C), to an abnormal, disease-causing form, PrP(Sc). This paper reports that cyclodextrins have the ability to reduce the pathogenic isoform of the prion protein PrP(Sc) to undetectable levels in scrapie-infected neuroblastoma cells. Beta-cyclodextrin removed PrP(Sc) from the cells at a concentration of 500 microM following 2 weeks of treatment. Structure activity studies revealed that antiprion activity was dependent on the size of the cyclodextrin. The half-maximal inhibitory concentration (IC(50)) for beta-cyclodextrin was 75 microM, whereas alpha-cyclodextrin, which possessed less antiprion activity, had an IC(50) of 750 microM. This report presents cyclodextrins as a new class of antiprion compound. For decades, the pharmaceutical industry has successfully used cyclodextrins for their complex-forming ability; this ability is due to the structural orientation of the glucopyranose units, which generate a hydrophobic cavity that can facilitate the encapsulation of hydrophobic moieties. Consequently, cyclodextrins could be ideal candidates for the treatment of prion diseases.  相似文献   

13.
The inclusion complexation behavior of paclitaxel with a series of oligo(ethylenediamino) bridged bis(beta-cyclodextrin)s possessing bridge chains in different length (1-4) has been investigated in order to improve the water solubility of paclitaxel. It is found that only the long-tethered bis(beta-cyclodextrin)s 1 and 2 can form the inclusion complexes with paclitaxel, which are characterized by NMR, SEM, XRD, FT-IR, TG-DTA, DSC, and microcalorimetry technology. The results obtained show that bis(beta-cyclodextrin)s 1 and 2 are able to solubilize paclitaxel to high levels up to 2 and 0.9 mg/mL, respectively. The high complex stability of bis(beta-cyclodextrin) 1 and paclitaxel is discussed from thermodynamic viewpoint. Furthermore, the cytotoxicity of these complexes assessed using a human erythroleukemia K562 cell line indicates that the IC(50) value of 1/paclitaxel complex is 6.0 x 10(-10) mol/dm(3) (calculated as paclitaxel molar concentration), which means that the antitumor activity of 1/paclitaxel complex is better than that of parent paclitaxel (IC(50) value 9.8 x 10(-10) mol/dm(3)). This high antitumor activity, along with the satisfactory water solubility and high thermal stability of the 1/paclitaxel complex, will be potentially useful for its clinical application as a highly effective antitumor drug.  相似文献   

14.
The decolorization of phenolphtalein upon complexation to cyclodextrins was studied to measure beta-cyclodextrin concentrations. Several factors possibly affecting the self-life of the dye were tested. By making the assays in 0.1 M NaCO3 solution beta-cyclodextrin concentrations down to 6 microM (SNR = 2) could be determined while the practical assay range reached up to 0.06 mM. In this form the method was unaffected by acyclic oligosaccharides and directly applicable to cyclodextrin assays in complex starch hydrolyzates. The method was further modified to be used in a flow-injection analyzator and the results were comparable to those obtained by HPLC analyses after prepurification of the samples.  相似文献   

15.
A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.  相似文献   

16.
Alpha-, beta- and gamma-cyclodextrins are cyclic hexamers, heptamers, and octamers of glucose, respectively, and thus are hydrophilic; nevertheless, they have the ability to solubilize lipids through the formation of molecular inclusion complexes. The volume of lipophilic space involved in the solubilization process increases with the number of glucose units in the cyclodextrin molecule and, consequently, cyclodextrins were found to have different effects on human erythrocytes: (a) in the induction of shape change from discocyte to spherocyte the potency was observed to be alpha greater than gamma, but with beta-cyclodextrin hemolysis occurred before the change was complete; (b) in the increase of fluorescence intensity of 1-anilinonaphthalene-8-sulfonate in cyclodextrin-pretreated membranes, the observed potency was beta much greater than gamma greater than alpha; (c) in the release of potassium and hemoglobin, the potency was beta greater than alpha greater than gamma. The potencies of cyclodextrin for solubilizing various components of erythrocytes were alpha greater than beta much greater than gamma for phospholipids, beta much greater than gamma greater than alpha for cholesterol and beta much greater than gamma greater than alpha for proteins. The solubilization potencies were derived from concentration/final-effect curves. The above processes occurred without entry of solubilizer into the membrane, since (a) beta-[14C]cyclodextrin did not bind to erythrocytes and (b) cyclodextrins did not enter the cholesterol monolayer. A study of the [3H]cholesterol in erythrocytes indicated that beta-cyclodextrin extracted this lipid from membrane into a new compartment located in the aqueous phase which could equilibrate rapidly with additional erythrocytes. Therefore, the effects of cyclodextrins differ from those of detergents which first incorporate themselves into membranes then extract membrane components into supramolecular micelles.  相似文献   

17.
The use of four cyclodextrins (three native and one beta-CD derivative) as NMR chiral solvating agents to resolve the enantiomers of (+/-)-cizolirtine, 1, and its chemical precursor (the carbinol, (+/-)-2), was investigated. The best enantiodiscrimination occurred when beta-cyclodextrin was used. ROESY experiments were performed to qualitatively ascertain the most probable host-guest structures in D(2)O solution, and the binding features found were explained in terms of spatial fitting of the guest molecules into the macrocyclic cavities. No geometrical differences were noted between the two diastereomeric complexes formed by a cyclodextrin and a racemic substrate, so the magnetic nonequivalence induced on guest protons by the enantioselective binding had to be explained as a result of subtle disparities in the orientation and/or the conformational state of the complexed enantiomers.  相似文献   

18.
The chiral separation of cyclic Mannich ketones of potential pharmaceutical interest is investigated using HPLC and CE. These Mannich ketones show a marked antibacterial and antifungal activity. In HPLC, stationary phases containing cellulose derivatives or beta-cyclodextrin were used and in CE different cyclodextrins, such as beta-CD, gamma-CD, carboxymethyl-beta-CD and succinyl-beta-CD were added to the background electrolyte as chiral selectors.  相似文献   

19.
A synthesis of beta-cyclodextrin (beta-CD) dimer, containing two beta-CD moieties that are linked through their sides by ethylenediamine, was presented. The dimer was characterized by means of IR, (1)H NMR, (13)C NMR, and elemental analysis. The inclusion complexation behavior of beta-cyclodextrin dimer with tranilast was studied in an aqueous KH(2)PO(4)-citric acid buffer solution of pH 2.00 at room temperature by spectrofluorimetry. Based on the significant enhancement of fluorescence intensity of tranilast, a spectrofluorimetric method with high sensitivity and selectivity was developed for the determination of tranilast in bulk aqueous solution in the presence of ethylenediamine beta-CD dimer. The apparent association constant of the complex was 8.39 x 10(3) L mol(-1), and the linear range was 10.8-1.40 x 10(4) ng mL(-1) with the detection limit 3.2 ng mL(-1). There was no interference from the excipients normally used in tablets and serum constituents. The proposed method was successfully applied to the determination of tranilast in serum.  相似文献   

20.
The development of novel macromolecular contrast agents that offer enhanced relaxivity profiles at high magnetic fields have the potential to greatly improve the diagnosis, understanding, and treatment of disease. To this end, we have designed a monodiperse paramagnetic beta-cyclodextrin click cluster decorated with seven paramagnetic arms. A novel alkyne-functionalized diethylenetriaminetetraacetic acid (DTTA) chelate (6) has been created and coupled to a per-azido-beta-cyclodextrin core (7) to yield the precursor macromolecule (8). After removal of the protecting groups and titrating with Gd (3+), the final paramagnetic click cluster, Gd10, was obtained. Luminescence measurements were carried out in H 2O and D 2O on an analogous structure, Eu10, and indicated that at each lanthanide has an average of 1.8 water exchange sites, which is important for enhancing relaxivity and MRI resolution. This discrete paramagnetic click cluster yields a high relaxivity profile (43.4 mM (-1) s (-1) per molecule and 6.2 mM (-1) s (-1) per Gd (3+) at 9.4 T) and enhanced contrast on a human MRI scanner as compared to a commercial agent, Magnevist (3.2 mM (-1) s (-1) at 9.4 T). Moreover, the useful inclusion properties exhibited by beta-cyclodextrin also make this an excellent host scaffold to functionalize via noncovalent assembly with receptor specific targeting moieties for biomolecular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号