首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black liquor (BL) is a notoriously difficult wastewater to treat due to the economic and efficiency limitations of physiochemical methods and intrinsic difficulties with bioremediation strategies caused by the high pH (10–13) and lignin content. This study investigated the feasibility of a novel bioaugmentation strategy for BL treatment, which uses a mixed microorganism culture of lignocellulose-degrading microorganisms isolated from degraded bamboo slips. Black liquor treatment was assessed in terms of chemical oxygen demand (COD) and color removal with a sequencing batch reactor organic loading rate of 9 kg COD/L·day under highly alkaline conditions (pH?10). Results revealed that bioaugmented activated sludge treatment of BL with special mixed microorganisms significantly enhanced the removal efficiency of COD, color, and lignin from the wastewater up to 64.8, 50.5, and 53.2 %, respectively. Gel permeation chromatography profiles showed that the bioaugmentation system could successfully degrade high molecular lignin fragments in black liquor. This work confirms bioaugmentation as a feasible alternative strategy for enhanced biological treatment of wastewater with high lignin content and high organic load rate under strongly alkaline conditions.  相似文献   

2.
The pulping byproducts (black liquor) cause serious environmental problem due to its high pollution load. In order to search the degradability of black liquor, the potential bacterial strains Citrobacter freundii (FJ581026) and Citrobacter sp. (FJ581023) were applied in axenic and mixed condition. Results revealed that the mixed bacterial culture are more effective than axenic condition and can reduce 82% COD, 79% AOX, 79% color and 60% lignin after 144 h of incubation period. Additionally, the optimum activity of lignin degrading enzyme was noted at 96 h and characterized as manganese peroxidase (MnP) by SDS–PAGE analysis. Further, the HPLC analysis of control and bacterial degraded sample has shown the reduction as well as shifting of peaks compared to control indicating the degradation as well as transformation of compounds of black liquor. The comparative GC–MS analysis of control and degraded black liquor revealed that along with lignin fragment some chlorophenolic compounds 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol and pentachlorophenol were detected in black liquor degraded by axenic culture whereas these chlorophenolic compounds were completely absent in black liquor degraded by mixed bacterial culture. These chlorophenol inhibit the oxidative degradation which seems a major reason behind the low degradability of axenic degradation compared to mixed culture. The innovation of this aerobic treatment of alkaline black liquor opens additional possibilities for the better treatment of black liquor along with its metabolic product.  相似文献   

3.
Recently, it had been shown that Euglena gracilis was able to grow heterotrophically not only on synthetic media, but also on media based on potato liquor. Supplementation with glucose in both cases led to the accumulation of paramylon, a β‐1,3‐glucan. Thus, such a process may yield a valuable product accompanied by the revaluation of an otherwise annoying waste stream of the potato‐starch industry. Actually, process strategies have been evaluated in order to optimise the concentration of paramylon obtained at the end of the cultivation process. Therefore, cultivation processes based on fed‐batch and in particular repeated‐batch strategies have been studied. It is shown that repeated‐batch operation maybe particularly suited for such a process since E. gracilis seems to adapt gradually to the cultivation medium so that the concentration of media components may be increased step by step. Repeated‐batch cultivation of E. gracilis leads to biomass concentrations in access of 20 g/L with a consistent paramylon mass fraction of about 75%. Cultivations have been carried out at an operating temperature of 27.5°C. As had been found earlier already, pH control is not required during cultivation. On the basis of these results it is clear that repeated‐batch cultivation represent a simple and economic way for the production of paramylon by heterotrophic cultivation of E. gracilis.  相似文献   

4.
Summary The production of citric acid by batch fermentation with the yeast strain Candida tropicalis ATCC 20240 was chosen as a potential process for the valorization of kraft black liquor. The effect of nitrogen concentration was studied and direct bioconversion of acetate to citrate was achieved when no nitrogen was supplemented to the medium. The use of kraft black liquor's acetate as a potential substrate for citric acid production was investigated. The acid precipitated liquor was highly inhibitory when its concentration was above 25% of the fermentation broth content. The yields of citric acid at low concentrations of kraft black liquor (5% and 15%) were the same as those recorded in synthetic acetate medium. Other organic acids present in the liquor may affect the yields and rates of citric acid production over acetate. Substrate uptake rates and product formation rates were lower, however, in comparison to synthetic media. The utilization of immobilized biomass improved the process parameters on kraft black liquor and enhanced the fermentation capabilities.  相似文献   

5.

Background

Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor.

Findings

Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions.

Conclusions/Significance

Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment. Facilitating the treatment process by the constructed consortium would provide a promising opportunity to reduce the pollution, as well as to save forest resources and add value to a waste product.  相似文献   

6.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

7.
A repeated batch process was performed to culture Bifidobacterium longum CCRC 14634. An on-line device, oxidation-reduction potential (ORP), was used to monitor cell growth and uptake of nutrients in the culture. The ORP of the culture medium decreased substantially during fermentation until nutrients were depleted. Six cycles of batch fermentation using ORP as a control parameter were successfully carried out. As soon as ORP remained constant or increased, three-quarters of the broth was removed, and the same volume of fresh medium was fed to the fermenter for a new cycle of cultivation. Average cell concentrations of 1.9×109 and 3.4×109 cfu ml–1 for repeated batch fermentation in MRS (Lactobacilli MRS broth) and WY (containing whey hydrolyzates, yeast extract, l-cysteine) medium, respectively, were achieved. Cell mass productivities for batch, fed-batch and repeated batch fermentation using MRS medium were 0.51, 0.41, and 0.64 g l–1 h–1, respectively, and those for batch and repeated batch using WY medium were 0.76, 0.99 g l–1 h–1, respectively. The results indicate a possible industrial process to culture Bifidobacteria sp.  相似文献   

8.
Batch and continuous biogas production from grass silage liquor   总被引:2,自引:0,他引:2  
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m−3 day−1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg−1 COD.  相似文献   

9.
Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.  相似文献   

10.
Laboratory experiments were conducted using pure cultures ofAcinetobacter under anaerobic/aerobic cyclic conditions to explain the release and uptake of soluble phosphate in an activated sludge process showing enhanced biological phosphate removal (EBPR). Under anaerobic/aerobic cyclic conditions in a Sequencing Batch Reactor (SBR), COD uptake concurrent with soluble phosphate release byAcinetobacter was not significant during the anaerobic periods, indicating that EBPR would not be established in pure cultures. However,Acinetobacter cells accumulated higher phosphate content (5.2%) in SBR than that obtained (4.3%) from batch experiments. These results suggest thatAcinetobacter sp. may not follow the proposed pattern of behavior of poly-P bacteria in EBPR activated sludge plants.  相似文献   

11.
Summary Continuous decolorization of kraft black liquor by mycelial pellets ofCoriolus versicolor in the presence of glucose as co-substrate is discussed. A linear relationship was developed between the rate of decolorization and the liquor concentration. The rate constant was equal to 0.00961 gmyc–1 h–` at 22°C. During the continuous experiments the pellets exhibited no apparent loss of activity when the liquor concentration was in the range of 400 CU l–1 to 5000 CU l–1. However, in the repeated batch experiments a loss of activity was observed which was dependent on the initial liquor concentration. The half-life of pellets was equal to 4.7, 9.4 and 20.2 days for the initial liquor concentration of 1380, 31 780 and 6990 CU l–1, respectively. The production of the extracellular enzyme, laccase, was followed but could not be used as an indicator of the ligninolytic activity. The involvement of the intracellular enzymes ofC. versicolor in the decolorization process is described.  相似文献   

12.
Cells of the thermophilic Bacillus subtilis WY34 were immobilized on various formaldehyde-activated polymer membranes and the immobilized cells were used for the production of thermostable mannanase in flasks. The results showed that polyethersulfone membranes (PES) and nylon-6 membranes were the most suitable supports for cell immobilization to produce the mannanase. Moreover, PES and nylon-6 membranes immobilized cells provided 1.78- and 1.74-fold higher mannanase activity compared to the control after 4 days of cultivation, respectively. The immobilized cells on PES and nylon-6 membranes had good stability and retained 131.5 and 114.3% of ability of enzyme production even after six cycles of repeated batch fermentation, respectively. Active cell growth was observed by scanning electron microscopy (SEM) after 16 days (four cycles) repeated batch cultivation. Therefore, the membrane-immobilized cells of B. subtilis WY34 can be proposed as an effective biocatalyst for repeated usage for production of the thermostable mannanase.  相似文献   

13.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

14.
Four different bacterial strains were isolated from pulp and paper mill sludge in which one alkalotolerant isolate (LP1) having higher capability to remove color and lignin, was identified as Bacillus sp. by 16S RNA sequencing. Optimization of process parameters for decolorization was initially performed to select growth factors which were further substantiated by Taguchi approach in which seven factors, % carbon, % black liquor, duration, pH, temperature, stirring and inoculum size, at two levels, applying L-8 orthogonal array were taken. Maximum color was removed at pH 8, temperature 35°C, stirring 200 rpm, sucrose (2.5%), 48 h, 5% (w/v) inoculum size and 10% black liquor. After optimization 2-fold increase in color and lignin removal from 25–69% and 28–53%, respectively, indicated significance of Taguchi approach in decolorization and delignification of lignin in pulp and paper mill effluent. Enzymes involved in the process of decolorization of effluent were found to be xylanase (54 U/ml) and manganese peroxidase (28 U/ml). Treated effluent was also evaluated for toxicity by Comet assay using Saccharomyces cerevisiae MTCC 36 as model organism, which indicated 58% reduction after treatment by bacterium.  相似文献   

15.
Nitroexplosives are essential for security and defense of the nation and hence their production continues. Their residues and transformed products, released in the environment are toxic to both terrestrial and aquatic life. This necessitates remediation of wastewaters containing such hazardous chemicals to reduce threat to human health and environment. Bioremediation technologies using microorganisms become the present day choice. High Melting Explosive (HMX) is one of the nitroexplosives produced by nitration of hexamine using ammonium nitrate and acetic anhydride and hence the wastewater bears high concentration of nitrate and acetate. The present investigation describes potential of a soil isolate of yeast Pichia sydowiorum MCM Y-3, for remediation of HMX wastewater in fixed film bioreactor (FFBR). The flask culture studies showed appreciable growth of the organism in HMX wastewater under shake culture condition within 5–6 days of incubation at ambient temperature (28 ± 2°C). The FFBR process operated in both batch and continuous mode, with Hydraulic Retention Time (HRT) of 1 week resulted in 50–55% removal in nitrate, 70–88% in acetate, 50–66% in COD, and 28–50% in HMX content. Continuous operation of the reactor showed better removal of nitrate as compared to that in the batch operation, while removal of acetate and COD was comparable in both the modes of operation of the reactor. Insertion of baffles in the reactor increased efficiency of the reactor. Thus, FFBR developed with baffles and operated in continuous mode will be beneficial for bioremediation of high nitrate and acetate containing wastewater using the culture of P. sydowiorum.  相似文献   

16.
Candida rugosa lipase (CRL) was applied in a non-solvent esterification reaction to yield twelve wax esters. All products were obtained in nearly 100% yield for 10 h at 50°C when immobilized PEG2000-activated C. rugosa lipase was added to the reaction mixture. The surfactant had also a beneficial effect on the stability of the biocatalytic preparation with 83% of its activity conserved after the seventh run of repeated batch reactions.  相似文献   

17.
Summary By contaminating a Tunisian soil with black oxidized and sterilized olive-mill wastewaters (OMW), 30 new indigenous fungal soil strains able to overcome the OMW toxicity could be directly selected. Ten of the fungal strains previously isolated were screened for their capability to grow in a liquid culture medium containing oxidized OMW as the only source of carbon and energy. According to these preliminary tests, strain F2 showed the best capability of removing black colour and COD (chemical oxygen demand) and was further identified as Aspergillus flavus. After optimization of batch-liquid culture conditions in the presence of oxidized OMW, the time course of biomass and enzyme production by A. flavus F2 was followed in relation to colour and COD removal. A. flavus F2 could efficiently decolourize and detoxify the black oxidized OMW (58 and 46% of colour and COD removal, respectively, after 6 days of cultivation), concomitantly with the production of tannase (8000 UI/l on day 3).  相似文献   

18.
Lactobacillus delbrueckii subsp. lactis strains were developed having increased activity, by gradually acclimatizing the bacteria to acidic conditions over repeated batch culture. Cells from one batch culture were used as the inoculum for the subsequent batch culture and thereby an adapted strain of Lactobacillus was obtained showing improved lactic acid productivity, cell growth and total glucose utilization. Furthermore, the acclimatized cells used significantly less nitrogen for a given level of lactic acid production, which is significant from an industrial point of view. The developed procedure decreases fermentation time and nutrient use, leading to reduced operation costs, while providing a lactic acid yield superior to previously reported methods.  相似文献   

19.
Degradation and detoxification of a mixture of persistent compounds (2-chlorophenol, phenol and m-cresol) were studied by using pure and mixed indigenous cultures in aerobic reactors. Biodegradation assays were performed in batch and continuous flow reactors. Biodegradation was evaluated by determining total phenols, ultraviolet spectrophotometry and chemical oxygen demand (COD). Microbial growth was measured by the plate count method. Scanning electronic microscopy was employed to observe the microbial community in the reactor. Detoxification was evaluated by using Daphnia magna toxicity tests. Individual compounds were degraded by pure bacteria cultures within 27 h. The mixture of 2-clorophenol (100 mgl−1), phenol (50 mgl−1) and m-cresol (50 mgl−1) was degraded by mixed bacteria cultures under batch conditions within 36 h: 99.8% of total phenols and 92.5% of COD were removed; under continuous flow conditions 99.8% of total phenols and 94.9% of COD were removed. Mineralization of phenolic compounds was assessed by gas chromatography performed at the end of the batch assays and in the effluent of the continuous-flow reactor. Toxicity was not detected in the effluent of the continuous-flow reactor.  相似文献   

20.
Leuconostoc mesenteroides NRRL B512F is the main strain used in industrial fermentations to produce dextransucrase and dextran. This process has been studied since the Second World War, when it was used as blood plasma expander. A study about the effect of phosphate concentration on cell propagation in a semicontinuous shake-flask culture is described in this work. Dextransucrase is obtained by fermentation of the Leuconostoc mesenteroides NRRL B512F in the presence of sucrose as substrate, a nitrogen source (corn liquor or yeast extract) and minerals. Phosphate is currently used in order to buffer the culture medium. Cell propagation can be done through a repeated batch culture, where dilution in a fresh medium is made with relatively short periods. The standard medium for dextransucrase production is prepared using 0.1 M of K2HPO4. In this work the level of phosphate was increased to 0.3 M, and an increase on biomass and on the enzyme activity was found when phosphate enriched medium was used. Higher phosphate buffer concentration was also able to keep the pH values above 5.0 during the entire process, avoiding enzyme denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号