首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The a and b subunits constitute the stator elements in the F0 sector of F1F0-ATP synthase.Both subunits have been difficult to study by physical means, so most of the information onstructure and function relationships in the a and b subunits has been obtained using mutagenesisin combination with biochemical methods. These approaches were used to demonstrate thatthe a subunit in association with the ring of c subunits houses the proton channel throughF1F0-ATP synthase. The map of the amino acids contributing to the proton channel is probablycomplete. The two b subunits dimerize, forming an extended flexible unit in the peripheralstalk linking the F1 and F0 sectors. The unique characteristics of specific amino acid substitutionsaffecting the a and b subunits suggested differential effects on rotation during F1F0-ATPaseactivity.  相似文献   

2.
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b N2A,T6A,Q10A subunit was also oxidative phosphorylation deficient, but the b N2A,T6A,Q10A protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.  相似文献   

3.
E. coli F1-ATPase has been studied mainly by the genetic approach. Mutations in either the or subunit modified the kinetics of multisite and uni-site hydrolysis of ATP. The mechanism of F1-ATPase and the essential amino acid residues of subunits are discussed.Abbreviations used: Pi, inorganic phosphate; DCCD, dicyclohexylcarbodiimide.  相似文献   

4.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

5.
The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor’s rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.  相似文献   

6.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

7.
We have reviewed recent molecular biological studies on F1-ATPase ofEscherichia coli and emphasized the advantages of using the bacterium in studies on this important enzyme. All subunits had homologies of varied degrees with those from other organisms. Mutations of F1 subunits caused defects in catalysis and assembly. Defects of the mutant enzymes were studied extensively together with the determination of the amino acid substitutions. Extensive molecular biological studies may help greatly in understanding the normal mechanism and assembly of the complex.  相似文献   

8.
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits and of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% -helical together with 14% turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.  相似文献   

9.
F1 domain of F1Fo-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using surface plasmon resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin (G-gly)) as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (E(E/D)XY), that directly interacts with the F1-ATPase and the amino acids in the F1-ATPase that bind this motif. Replacement of the Glu-9 residue by an alanine in the E(E/D)XY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking F1-ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase, which is induced by G-gly. These results suggest an important contribution of cell surface F1-ATPase in the pro-proliferative action of this gastrointestinal peptide.  相似文献   

10.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

11.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

12.
The rotation of an asymmetric core of subunits in F0F1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F0 to the endergonic conformational changes in F1 required for substrate binding and product release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the subunit of F1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F1 and membrane-bound F0F1. Furthermore, the inhibition of this rotation by the modification of F0 with DCCD suggests that rotation in F1 is obligatorily coupled to rotation in F0 as an integral part of the coupling mechanism.  相似文献   

13.
The structural organization and overall dimensions of the Escherichia coli F1-ATPase in solutionhas been analyzed by synchroton X-ray scattering. Using an independent ab initio approach,the low-resolution shape of the hydrated enzyme was determined at 3.2 nm resolution. Theshape permitted unequivocal identification of the volume occupied by the 3 3 complex ofthe atomic model of the ECF1-ATPase. The position of the ^ and subunits were found byinteractive fitting of the solution scattering data and by cross-linking studies. Laser-inducedcovalent incorporation of 2-azido-ATP established a direct relationship between nucleotidebinding affinity and the different interactions between the stalk subunits and with the threecatalytic subunits () of the F1-ATPase. Mutants of the ECF1-ATPase with the introductionof Trp-for-Tyr replacement in the catalytic site of the complex made it possible to monitorthe activated state for ATP synthesis (ATP conformation) in which the and subunits arein close proximity to the subunits and the ADP conformation, with the stalk subunits arelinked to the subunit.  相似文献   

14.
The F0 sector of the ATP synthase complex facilitates proton translocation through the membrane, and via interaction with the F1 sector, couples proton transport to ATP synthesis. The molecular mechanism of function is being probed by a combination of mutant analysis and structural biochemistry, and recent progress on theEscherichia coli F0 sector is reviewed here. TheE. coli F0 is composed of three types of subunits (a, b, andc) and current information on their folding and organization in F0 is reviewed. The structure of purified subunitc in chloroform-methanol-H2O resembles that in native F0, and progress in determining the structure by NMR methods is reviewed. Genetic experiments suggest that the two helices of subunitc must interact as a functional unit around an essential carboxyl group as protons are transported. In addition, a unique class of suppressor mutations identify a transmembrane helix of subunita that is proposed to interact with the bihelical unit of subunitc during proton transport. The role of multiple units of subunitc in coupling proton translocation to ATP synthesis is considered. The special roles of Asp61 of subunitc and Arg210 of subunita in proton translocation are also discussed.  相似文献   

15.
Summary The atp operon from the extreme alkaliphile Bacillus firmus OF4 was cloned and sequenced, and shown to contain genes for the eight structural subunits of the ATP synthase, preceded by a ninth gene predicted to encode a 14 kDa hydrophobic protein. The arrangement of genes is identical to that of the atp operons from Escherichia coli, Bacillus megaterium, and thermophilic Bacillus PS3. The deduced amino acid sequences of the subunits of the enzyme are also similar to their homologs in other ATP synthases, except for several unusual substitutions, particularly in the a and c subunits. These substitutions are in domains that have been implicated in the mechanism of proton translocation through F0-ATPase, and therefore could contribute to the gating properties of the alkaliphile ATP synthase or its capacity for proton capture.  相似文献   

16.
Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F1F0-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F1F0-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC50 value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F1F0-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F1F0-ATPase by 2DG.  相似文献   

17.
The ATP hydrolysis rate and the ATP hydrolysis-linked proton translocation by the F0F1-ATPase of beef heart submitochondrial particles were examined in the presence of several divalent metal cations. All Me–ATP complexes tested sustained ATP hydrolysis, although to a different extent. However, only Mg- and Mn-ATP-dependent hydrolysis could sustain a high level of proton pumping activity, as determined by acridine fluorescence quenching. Moreover, the K m of the Me-ATP hydrolysis-induced proton pumping activity was very similar to the K m value of Me-ATP hydrolysis. Both oligomycin and DCCD caused the full recovery of the fluorescence, providing clear evidence for the association of Mg-ATP hydrolysis with proton translocation through the F0F1-ATPase complex. In contrast, with other Me-ATP complexes, including Ca-ATP as substrate, the proton pumping activity was undetectable, implicating an uncoupling nature for these substrates. Attempts to demonstrate the involvement of the subunit of the enzyme in the coupling mechanism failed, suggesting that the participation of at least the N-terminal segment of the subunit in the coupling mechanism of the mitochondrial enzyme is unlikely.  相似文献   

18.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

19.
The Mg2+ dependent asymmetry of the F1-ATPase catalytic sites leads to the differences in affinity for nucleotides and is an essential component of the binding-change mechanism. Changes in metal ligands during the catalytic cycle responsible for this asymmetry were characterized by vanadyl (V IV + O)2+, a functional surrogate for Mg2+. The 51V-hyperfine parameters derived from EPR spectra of VO2+ bound to specific sites on F1 provide a direct probe of the metal ligands. Site-directed mutations of metal ligand residues cause measurable changes in the 51V-hyperfine parameters of the bound VO2+, thereby providing a means to identification. Initial binding of the metal–nucleotide to the low-affinity catalytic site conformation results in metal coordination by hydroxyl groups from the P-loop threonine and catch-loop threonine. Upon conversion to the high-affinity conformation, carboxyl groups from the Walker homology B aspartate and MF1E197 become ligands in lieu of the hydroxyl groups.  相似文献   

20.
K+ uptake by the Escherichia coli TrkA system is unusual in that it requires both ATP and ; a relation withH+ circulation through the membrane is thereforesuggested. The relationship of this system with theF0F1-ATPase was studied in intact cells grownunder different conditions. A significant increase of theN,N-dicyclohexylcarbodiimide(DCCD)-inhibitedH+ efflux through the F0F1 by 5 mMK+, but not by Na+ added into thepotassium-free medium was revealed only in fermenting wild-type orparent cells, that were grown under anaerobic conditions withoutanaerobic or aerobic respiration and with the production ofH2. Such an increase disappeared in the unc or the trkA mutants that have alteredF0F1 or defective TrkA, respectively.This finding indicates a closed relationship between TrkA andF0F1, with these transport systems beingassociated in a single mechanism that functions as an ATP-drivenH+–K+-exchanging pump. ADCCD-inhibited H+–K+-exchangethrough these systems with the fixed stoichiometry of H+and K+ fluxes(2H+/K+) and a higherK+ gradient between the cytoplasm and the externalmedium were also found in these bacteria. They were not observed incells cultured under anaerobic conditions in the presence of nitrate orunder aerobic conditions with respiration and without production ofH2. The role of anaerobic or aerobic respiration as adeterminant of the relationship of the TrkA with theF0F1 is postulated. Moreover, an increase ofDCCD-inhibited H+ efflux by added K+, aswell as the characteristics of DCCD-sensitiveH+–K+-exchange found in a parentstrain, were lost in the arcA mutant with a defectiveArc system, suggesting a repression of enzymes in respiratorypathways. In addition, K+ influx in the latest mutantwas not markedly changed by valinomycin or with temperature. ThearcA gene product or the Arc system is proposed to beimplicated in the regulation of the relationship between TrkAand F0F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号