首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNAi, inhibition of gene expression by double stranded RNA molecules, has rapidly become a powerful laboratory technique to study gene function. The effectiveness of the procedure raised the question of whether this laboratory technique may actually mimic a natural cellular control mechanism that works on similar principles. Indeed recent evidence is accumulating to suggest that RNAi is a natural control mechanism that might even serve as a primitive immune response against RNA viruses and retroposons. Three different interference scenarios seem to be utilized by various RNAi mechanisms. One of the mechanisms involves degradation of mRNA molecules. Here we suggest a method to systematically scan entire genomes simultaneously for RNAi elements and the presence of cellular genes that are degraded by these RNAi elements via exact short base-pair matching. The method is based on scanning the genomes using a suffix tree data structure that was specifically modified to identify sets of combinations of repeated and inverted repeated sequences of 20 bp or more. Initial scan suggest that a large number, about 7% of C.elegans and 3% of C.briggsae genes, have the potential to be subject to natural RNAi control. Two methods are proposed to further analyze these genes to select the cases that are more likely to be actual cases of RNAi control. One method involves looking for ESTs that can provide direct evidence that RNAi control element are indeed expressed. The other method looks for synteny between C.elegans and C.briggsae assuming that genes that might be under RNAi control in both organisms are more likely to be biological significant. Taken together, supportive evidence was found for about 70 genes to be under RNAi control. Among these genes are: transposase, hormone receptors, homeobox proteins, defensin, actins, and several types of collagens. While our method is not capable of detecting all cases of natural RNAi control, it points to a large number of potential cases that can be further verified by experimental work.  相似文献   

2.
RNA干扰(RNAi)是由小干扰RNA(siRNA)引发的生物细胞内同源基因的转录后基因沉默(PTGS)现象,是一种古老的生物抵抗外在感染的防御机制。RNAi因其在维持基因组稳定、调控基因表达和保护基因组免受外源核酸侵入等方面发挥的重要作用,已被广泛用于探索基因功能、基因治疗和新药的研发。外源导入siRNA引发的RNAi可以特异性抑制病毒的复制与感染,为抗病毒感染治疗开辟了一条新的途径。  相似文献   

3.
4.
5.
6.
7.
8.
Masta SE  Klann AE  Podsiadlowski L 《Gene》2008,417(1-2):35-42
Arachnids are an ancient and diverse group of arthropods, yet few representative mitochondrial genomes have been published for most of the 11 orders. Here, we present and compare sequence and genomic data from two complete mitochondrial genomes from the arachnid order Solifugae (the camel spiders or wind scorpions), representing two families, Ammotrechidae and Eremobatidae. We also make genome-level and sequence comparisons between these taxa and the horseshoe crab, a chelicerate from the sister group to arachnids. In their organization, the two solifuge mitochondrial genomes are similar to that of the horseshoe crab, although both of the solifuges possess a region of repeated sequence. All 13 protein-coding genes and the two ribosomal RNA genes are of similar sizes to those found in the horseshoe crab. The ammotrechid and the eremobatid each have one tRNA gene that differs in location from those of other chelicerates, suggesting that these translocations occurred after the divergence of Solifugae from other arachnid lineages. All 22 tRNA genes in both solifuges are inferred to form secondary structures that are typical of those found in other metazoan mt genomes. However, in the eremobatid, the tRNA(Ser(UCN)) gene in the repeat region appears to have undergone partial duplication and loss of function, and a new tRNA(Ser(UCN)) gene has been created de novo. Our divergence data, in conjunction with the fossil record, indicate that these two solifuge families diverged more than 230 million years ago. Thus, despite several gene rearrangements and duplications, these data indicate a remarkable degree of evolutionary stasis.  相似文献   

9.
RNA干涉在纤毛虫中的研究进展   总被引:1,自引:1,他引:1  
RNA干涉是dsRNA介导的基因沉默现象,本文简要介绍了其作用的机制和生物学意义,重点阐述了RNA干涉在原生动物纤毛虫中的发现与应用,比较了RNA干涉与纤毛虫大核基因组重排机理的异同,并对RNA干涉在纤毛虫中传输的技术途径-RNAi喂饲法的原理也做了详细的介绍。  相似文献   

10.
Frech C  Chen N 《PloS one》2010,5(10):e13409
Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species.  相似文献   

11.
12.
Role of gene duplication in evolution   总被引:7,自引:0,他引:7  
T Ohta 《Génome》1989,31(1):304-310
It is now known that many multigene and supergene families exist in eukaryote genomes: multigene families with uniform copy members like genes for ribosomal RNA, those with variable members like immunoglobulin genes, and supergene families such as those for various growth factor and hormone receptors. Many such examples indicate that gene duplication and subsequent differentiation are extremely important for organismal evolution. In particular, gene duplication could well have been the primary mechanism for the evolution of complexity in higher organisms. Population genetic models for the origin of gene families with diverse functions are presented, in which natural selection favors those genomes with more useful mutants in duplicated genes. Since any gene has a certain probability of degenerating by mutation, success versus failure in acquiring a new gene by duplication may be expressed as the ratio of probabilities of spreading of useful versus detrimental mutations in redundant gene copies. Also examined are the effects of gene duplication on evolution by compensatory advantageous mutations. Results of the analyses show that both natural selection and random drift are important for the origin of gene families. In addition, interaction between molecular mechanisms such as unequal crossing-over and gene conversion, and selection or drift is found to have a large effect on evolution by gene duplication.  相似文献   

13.
14.
沈修婧  杨广 《昆虫知识》2016,(3):446-455
RNAi作为分子生物学的一种重要技术,在昆虫基因功能和功能基因组研究中得到广泛应用,同时,有关昆虫RNAi的机制也受到了大家的关注。近年来的研究结果表明,昆虫RNAi的通路与其他动物相同,根据引起基因沉默的RNA分子的类型,可以分为siRNA、miRNA和piRNA 3种不同的通路。昆虫RNAi通路中的核心元件包括了:(1)行使切割作用的RNaseⅢ家族成员Drosha和Dicer;(2)用来降解目的 mRNA的Argonaute蛋白;(3)dsRNA结合蛋白Pasha、R2D2和Loquacious。了解昆虫RNAi的通路及其核心元件,有助于我们更好地理解昆虫RNAi的分子机制和改进实现RNAi的方法,对促进昆虫RNAi技术的研究及其在害虫防控中的应用具有指导意义。  相似文献   

15.
RNA interference (RNAi) is a cellular process by which an mRNA is targeted for degradation by a small interfering RNA that contains a strand complementary to a fragment of the target mRNA, resulting in sequence specific inhibition of gene expression. The discovery of RNAi enabled the use of loss‐of‐function analyses in many non‐model insects other than Drosophila to elucidate the roles of specific genes. The RNAi approach has been widely used on insects in several fields, including embryogenesis, pattern formation, reproduction, biosynthesis and behavior. The increasing availability of insect genomes has made the RNAi technique an indispensable technique for characterizing gene functions in insects. Here we review the current status of RNAi‐based experiments in insects and the applications of RNAi for species‐specific insecticides, focusing on non‐drosophilid insects. We also identify future applications for RNAi‐based studies in Entomology.  相似文献   

16.
With the sequencing of the human genome and the genomes of most major model organisms completed, the systematic characterisation of gene functions remains a key challenge. During the past few years, RNA interference (RNAi) has become a powerful tool to silence the expression of genes and analyse their loss-of-function phenotype when mutant alleles are not available. Genome-wide RNAi screens against all predicted genes have been successfully used to dissect a variety of biological processes in Caenorhabditis elegans. Recently, a genome-wide library of double-stranded RNAs, that target every gene in the Drosophila genome and that is suitable for high throughput cell-based assays, was published. In this paper, recent advances will be summarised. Screening strategies and applications as a route to comprehensively characterising gene function will be discussed.  相似文献   

17.
Comparative genome analyses of close relatives have yielded exciting insight into the sources of microbial genome variability with respect to gene content, gene order and evolution of genes with unknown functions. The genomes of free-living bacteria often carry phages and repetitive sequences that mediate genomic rearrangements in contrast to the small genomes of obligate host-associated bacteria. This suggests that genomic stability correlates with the genomic content of repeated sequences and movable genetic elements, and thereby with bacterial lifestyle. Genes with unknown functions present in a single species tend to be shorter than conserved, functional genes, indicating that the fraction of unique genes in microbial genomes has been overestimated.  相似文献   

18.
Organisms have acquired plastids by convoluted paths that have provided multiple opportunities for gene transfer into a host nucleus from intracellular organisms, including the cyanobacterial ancestor of plastids, the proteobacterial ancestor of mitochondria, and both green and red algae whose engulfment has led to secondary acquisition of plastids. These gene movements are most accurately demonstrated by building phylogenetic trees that identify the evolutionary origin of each gene, and one effective tool for this is “PhIGs” (Phylogenetically Inferred Groups; http://PhIGs.org ), a set of databases and computer tools with a Web interface for whole‐genome evolutionary analysis. PhIGs takes as input gene sets of completely sequenced genomes, builds clusters of genes using a novel, graph‐based approach, and reconstructs the evolutionary relationships among all gene families. The user can view and download the sequence alignments, compare intron‐exon structures, and follow links to functional genomic databases. Currently, PhIGs contains 652,756 genes from 45 genomes grouped into 61,059 gene families. Graphical displays show the relative positions of these genes among genomes. PhIGs has been used to detect the evolutionary transfer of hundreds of genes from cyanobacteria and red algae into oömycete nuclear genomes, revealing that even though they have no plastids, their ancestors did, having secondarily acquired them from an intracellular red alga. A great number of genomes are soon to become available that are relevant to our broader understanding of the movement of genes among intracellular compartments after engulfing other organisms, and PhIGs will be an effective tool to interpret these gene movements.  相似文献   

19.
RNA干扰(RNAi)是生物体内源基因发生转录后特异性降解的一种生理现象,作为抵抗病毒的免疫机制,广泛存在于生物体内。RNAi在秀丽隐杆线虫中的发生机制已明确,但昆虫的系统性RNAi不同于线虫,在昆虫中尚未发现线虫跨膜蛋白SID.2的同源蛋白,且果蝇中不存在依赖于RNA的RNA聚合酶(RdRP),但存在具有相似活性的物质。昆虫发生RNAi的效率不仅与靶标基因自身及双链RNA的选择有关,而且与虫体的发育状态及摄入双链RNA的剂量相关。随着RNAi在昆虫中作用特点的阐明,RNAi的应用价值也逐渐体现。近年来,通过RNAi沉默靶标基因,不但促进了昆虫基因功能研究的发展,而且被广泛用于重要农业害虫抗药性基因的研究。最新研究表明,RNAi结合第2代测序技术,针对非模式昆虫,能迅速找到具有致死效应的靶标序列,加快了利用RNAi技术生产生物农药的步伐。  相似文献   

20.
Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication.Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance.Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号