首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The successful acclimation of eurhyhaline fishes from seawater to freshwater requires the gills to stop actively secreting ions and start actively absorbing ions. Gill Na(+),K(+)-ATPase is known to be an integral part of the active ion secretion model of marine fishes, but its importance in the active ion uptake model of freshwater fishes is less clear. This study, conducted in the high Arctic, examines gill Na(+),K(+)-ATPase regulation in wild anadromous arctic char returning to freshwater from the ocean. Gill Na(+),K(+)-ATPase activity, protein expression, and mRNA expression of Na(+),K(+)-ATPase isoforms alpha 1a and alpha 1b were monitored in arctic char at three points along their migration route to and from Somerset Island, Nunavut, Canada: out at sea (Whaler's Point), in seawater near the river mouth (Nat's Camp), and after entering the Union River. Arctic char collected from the Union River had more than twofold greater gill Na(+),K(+)-ATPase activity. This was associated with a significant increase (threefold) in Na(+),K(+)-ATPase isoform alpha 1a mRNA expression and a significant increase in plasma sodium and osmolality levels compared with seawater char. Compared with char sampled from Whaler's Point, Na(+),K(+)-ATPase isoform alpha 1b mRNA expression was decreased by approximately 50% in char sampled at Nat's Camp and the Union River. These results suggest that the upregulation of gill Na(+),K(+)-ATPase activity is involved in freshwater acclimation of arctic char and implicate a role for Na(+),K(+)-ATPase isoform alpha 1a in this process. In addition, we discuss evidence that arctic char go through a preparatory phase, or "reverse smoltification," before entering freshwater.  相似文献   

2.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

3.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21 per thousand salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6+/-4.9 U mg-1 and K0.5=1.31+/-0.05 mmol L-1. Stimulation of K+-phosphatase activity by magnesium (Vmax=125.3+/-7.5 U mg-1; K0.5=2.09+/-0.06 mmol L-1), potassium (Vmax=134.2+/-6.7 U mg-1; K0.5=1.33+/-0.06 mmol L-1) and ammonium ions (Vmax=130.1+/-5.9 U mg-1; K0.5=11.4+/-0.5 mmol L-1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI=304.9+/-18.3 micromol L-1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the approximately 2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar alpha-subunit expression in gill tissue from shrimps acclimated to 21 per thousand salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

4.
The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans.  相似文献   

5.
Atlantic salmon juveniles reared at constant temperature (9–10°C) were exposed to four photoperiod treatment and sampled every 2 weeks from January through May. Fish reared under normal photoperiod exhibited eight-and three fold increases in plasma growth hormone and gill Na+, K+-ATPase activity, respectively, between January and April. Fish exposed to abrupt increases in daylength (LD 15:9) in February or March responded with earlier increases in plasma growth hormone and gill Na+, K+-ATPase activity, and earlier decreases in condition factor relative to fish in the normal photoperiod group. Fish maintained under short daylength (LD 9:15) from January to May exhibited delayed and muted increases in plasma growth hormone and gill Na+, K+-ATPase activity. Plasma thyroxine exhibited a 2.5-fold increase from February to late March in the normal photoperiod group, was generally lower in the LD 9:15 group, but exhibited no obvious response to abrupt increases in daylength. There was an increase in plasma 3,5,3-triiodo-l-thyronine with time in all groups (43–80%) but no significant response to photoperiod. Plasma levels of somatostatin-25 were highest in the LD 9:15 group, but there was no detectable response to increased daylength in any of the photoperiod treatments. The results indicate that plasma growth hormone is responsive to increased daylength and may be causally related to subsequent increases in gill Na+, K+-ATPase.Abbreviations ANOVA two-way analysis of variance - BCA bicinchoninic acid - BSA Bovine serum albumin - EDTA ethylene diamine tetraacetic acid - ELISA enzyme-linked immunosorbent assay - EST eastern standard time - GH growth hormone - GLU Glucagen - IgG Immunoglobulin G - INS Insulin - LDN Simulated natural photoperiod - RIA radio immuno assay - RIA radio immuno assay - SEI Sucrose EDTA imidazole - SS-25 somatostatin-25 - SW sea water - T 3 3,5,3 triiodo-l-thyronine - T 4 thyroxine  相似文献   

6.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic alpha-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progressively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight alpha-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the alpha-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

7.
8.
Three isoforms of the alpha subunit of (Na,K)-ATPase have been identified in the rat central nervous system. Using a probe specific for the alpha 1 isoform, mRNA levels were measured from five sections of the rat spinal cord using slot blot techniques. Assigning a value of 1 to the slope obtained from the cervical section, the upper thoracic section was 2.6 times higher; the midthoracic section was 4.5 times higher; the lower thoracic section was 2.6 times higher; and the lumbar section was 1.7 times higher. The results suggest that alpha 1 isoform mRNA levels are not uniform throughout the spinal cord. In situ hybridization techniques showed that alpha 1 isoform mRNA was diffusely abundant in glial and central canal ependymal cells, while labeled neurons were localized exclusively in lateraily located anterior horn neurons in cervical, thoracic, and lumbar segments and in ventromedial neurons in mid-thoracic spinal cord. Also, dorsal root ganglia neurons were extensively labeled at all segments.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

9.
10.
The gene coding for the alpha-subunit of Na+,K+-ATPase has been localized on chromosome 2 of the American mink (Mustela vison) using the somatic cell hybrids mink-Chinese hamster and pig cDNA clones as hybridization probes.  相似文献   

11.
12.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

13.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK d was 96 nM; substituting MnCl2 decreased theK d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK 0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI 50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.  相似文献   

14.
Three unique inhibitors (SPAI-1, -+2, and -3) were first purified from porcine duodenal extract based on the Na+, K+-ATPase inhibitory activity. These peptide inhibitors had four disulfide bridges in common. The sequencing results of their S-carboxymethyl derivatives, lysilendopeptidase fragments, and chymotryptic peptides disclosed their entire primary structures. Both SPAI-2 and -3 consisted of 61 amino acids, respectively, and had almost the same sequences except for two amino acid substitutions, while SPAI-1 was found to lack the N-terminal twelve amino acid sequence of SPAI-2. The kinetics study revealed that SPAIs inhibited Na+, K+-ATPase by the competitive mode against Na+ and were uncompetitive with K+.  相似文献   

15.
K Hosoi  K Kurihara  A Kodama  Y Shioda  K Sugita  T Ueha 《Enzyme》1989,42(3):152-159
The alpha and alpha(+) isoforms of Na+,K(+)-ATPase were isolated from the kidney and brain of rats and purified. Their antisera were raised to analyze the alpha isoforms in rat tissues. We found that the submandibular gland (SMG) contains a new immunoreactive alpha subunit isoform, designated alpha(S) in this report, in addition to alpha identical with those found in the kidney or brain. The new alpha(S) strongly reacted with anti-alpha-antiserum but to a much lesser extent with anti-alpha(+)-antiserum. The alpha(S) had a slightly lower molecular weight (approximately 90,000) than the brain and kidney alpha isoforms. Various fractions of SMG tissues were added to the SMG microsomes and incubated in order to test whether or not the alpha(S) is formed artificially; no increase of alpha(S) was observed by these treatments, suggesting that the alpha(S) was not the product formed from alpha during the preparation of microsome sample, but was rather a protein originally present in the SMG. The alpha(S) protein was not detected in the SMG of 2- or 5-week-old rats, but it gradually increased in rats older than 8 weeks, reaching the maximum in 30-week-old animals. The Na+,K(+)-ATPase activity in the SMG increased concomitantly with the increase of alpha(S), indicating that Na+,K(+)-ATPase comprising alpha(S) also shows enzyme activity; it is speculated that alpha(S) may have some unique and unknown function(s) in older rats.  相似文献   

16.
17.
Al-Khalili L  Yu M  Chibalin AV 《FEBS letters》2003,536(1-3):198-202
We determined insulin-stimulated Na(+),K(+)-ATPase isoform-specific translocation to the skeletal muscle plasma membrane. When rat muscle plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of alpha(2)- but not alpha(1)-subunits was detected. However, using cell surface biotinylation techniques, an insulin-induced membrane translocation of both alpha(1) and alpha(2)-subunits in rat epitrochlearis muscle and cultured human skeletal muscle cells was noted. Na(+),K(+)-ATPase alpha-subunit translocation was abolished by the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, as well as by the protein kinase C inhibitor GF109203X. Thus, insulin mediates Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunit translocation to the skeletal muscle plasma membrane via a PI 3-kinase-dependent mechanism.  相似文献   

18.
Previous work from this laboratory led to the isolation by gel filtration and anionic exchange HPLC of a rat brain fraction named II-E, which highly inhibits synaptosomal membrane Na+, K+-ATPase activity. In this study we evaluated the kinetics of such inhibition and found that inhibitory potency was independent of Na+(1.56–200 mM), K+(1.25–40 mM), or ATP (1–8 mM) concentration. Hanes-Woolf plots indicated that II-E decreases Vmax but does not alter KMvalue, and suggested uncompetitive inhibition for Na+, K+or ATP. However, II-E became a stimulator at 0.5 mM ATP concentration. It is postulated that this brain factor may modulate ionic transport at synapses, thus participating in central neurotransmission.  相似文献   

19.
The distribution of K+-pNPPase (Na+,K+-ATPase) activity in the compartments of the Golgi apparatus in neurons of the cerebral cortex of young and adult Wistar rats was studied by ultrastructural cytochemistry. In adult rats, mainly the cis-most cisterna was associated with reaction deposits. In 10- and especially in 15-day-old rats, not only the cis-cisternae, but the cis- and trans-Golgi, as well as components of the Golgi stack, also revealed K+-pNPPase activity. The dynamic changes of K+ -pNPPase localization in the compartments of the neuronal Golgi complexes were discussed with respect to the biochemical evidence concerning the building, assembly and processing of Na+,K+-ATPase as plasma membrane glycoprotein. It was suggested that the high activity in the Golgi complexes seen in 15-day-old rats has to be associated with the advancing myelinization in this period and the necessity of Na+,K+-ATPase equipment of nodes of Ranvier.  相似文献   

20.
Human FXYD1 (phospholemman, PLM) has been expressed in Pichia pastoris with porcine alpha1/His10-beta1 subunits of Na+,K+-ATPase or alone. Dodecyl-beta-maltoside-soluble complexes of alpha1/beta1/PLM have been purified by metal chelate chromatography, either from membranes co-expressing alpha1,His10-beta1, and PLM or by in vitro reconstitution of PLM with alpha1/His10-beta1 subunits. Comparison of functional properties of purified alpha1/His10-beta1 and alpha1/His10-beta1/PLM complexes show that PLM lowered K0.5 for Na+ ions moderately (approximately 30%) but did not affect the turnover rate or Km of ATP for activating Na+,K+-ATPase activity. PLM also stabilized the alpha1/His10-beta1 complex. In addition, PLM markedly (>3-fold) reduced the K0.5 of Na+ ions for activating Na+-ATPase activity. In membranes co-expressing alpha1/His10-beta1 with PLM the K0.5 of Na+ ions was also reduced, compared with the control, excluding the possibility that detergent or lipid in purified complexes compromise functional interactions. When expressed in HeLa cells with rat alpha1, rat PLM significantly raised the K0.5 of Na+ ions, whereas for a chimeric molecule consisting of transmembranes segments of PLM and extramembrane segments of FXYD4, the K0.5 of Na+ ions was significantly reduced, compared with the control. The opposite functional effects in P. pastoris and HeLa cells are correlated with endogenous phosphorylation of PLM at Ser68 or unphosphorylated PLM, respectively, as detected with antibodies, which recognize PLM phosphorylated at Ser68 (protein kinase A site) or unphosphorylated PLM. We hypothesize that PLM interacts with alpha1/His10-beta1 subunits at multiple locations, the different functional effects depending on the degree of phosphorylation at Ser68. We discuss the role of PLM in regulation of Na+,K+-ATPase in cardiac or skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号