首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Activated macrophages inhibit human cytotrophoblast invasiveness in vitro   总被引:6,自引:0,他引:6  
Pre-eclampsia is associated with inadequate cytotrophoblast invasion and remodeling of the uterine spiral arterioles, as well as by an aberrant maternal immune response. This study determined the effect of activated macrophages and one of its products, tumor necrosis factor (TNF)-alpha, on cytotrophoblast invasiveness. Coculture with human lipopolysaccharide-activated macrophages decreased the ability of immortalized HTR-8/ SVneo human trophoblast cells to invade through reconstituted extracellular matrix (P < 0.05). This effect of activated macrophages on trophoblast invasiveness was paralleled by abrogation of a 55-kDa caseinolytic activity corresponding to prourokinase plasminogen activator (pro-uPA) and an increased secretion of plasminogen activator inhibitor 1 (PAI1), as determined by gel zymography and ELISA, respectively. Coculture with nonactivated macrophages did not significantly affect trophoblast invasiveness or pro-uPA and PAI1 secretion. Activated macrophages secreted detectable levels of TNF, and administration of exogenous TNF significantly decreased trophoblast invasiveness (P < 0.05), increased the secretion of PAI1 (P < 0.01), and completely inhibited the pro-uPA-associated caseinolytic activity by binding to the TNF receptor 1. Moreover, addition of up to 10 ng/ml of TNF did not increase the rate of apoptosis in HTR-8/SVneo cells. Finally, the increased secretion of PAI1 by trophoblast cells cocultured with activated macrophages was significantly inhibited when a neutralizing anti-TNF antibody was added to the cocultures. These results suggest that the aberrant presence of activated macrophages around uterine vessels may contribute to inadequate trophoblast invasion and remodeling of the uterine spiral arterioles. Thus, the presence of activated macrophages may be important in the etiology of pre-eclampsia.  相似文献   

2.
3.
Extravillous trophoblasts (EVTs) invade human decidua via sequential integrin-mediated binding and proteolysis of basement membrane proteins in the extracellular matrix (ECM). In preeclampsia, shallow EVT invasion impairs spiral artery and arteriole remodeling to reduce uteroplacental blood flow. Excess decidual cell-expressed matrix metalloproteinases (MMPs) 2 and 9, in response to preeclampsia-related interleukin 1 beta (IL1B) and tumor necrosis factor alpha (TNF), may inappropriately degrade these basement membrane proteins and impede EVT invasion. This study found significantly higher immunohistochemical MMP9 levels in decidual cells and adjacent interstitial trophoblasts in placental sections of preeclamptic versus gestational age-matched control women. In contrast, immunostaining for MMP2 and tissue inhibitor of matrix metalloproteinases 1 and 2 (TIMP1 and TIMP2) were similar in preeclamptic and control groups. First-trimester decidual cells were incubated with estradiol (E(2)) or E(2) + medroxyprogesterone acetate (MPA), with or without TNF or IL1B. As measured by ELISA, both cytokines elicited concentration-dependent increases in secreted MMP9 levels that were unaffected by MPA. In contrast, secreted levels of MMP2, TIMP1, and TIMP2 were unchanged in all treatment groups. Substrate gel zymography and Western blotting confirmed that each cytokine increased secreted levels of MMP9 but not MMP2. Similarly, quantitative RT-PCR found that TNF and IL1B enhanced MMP9, but not MMP2, mRNA levels. At the implantation site, inflammatory cytokine-enhanced MMP9 may promote preeclampsia by disrupting the decidual ECM to interfere with normal stepwise EVT invasion.  相似文献   

4.
Cytokines’ secretion from the decidua and trophoblast cells has been known to regulate trophoblast cell functions, such as Extravillous trophoblasts (EVTs) cell migration and invasion and remodeling of spiral arteries. Defective angiogenesis and spiral arteries transformation are mainly caused by proinflammatory cytokines and excessive thrombin generation during preeclampsia. Monocyte chemotactic protein-1 (MCP-1), a crucial cytokine, has a role in maintaining normal pregnancy. In this study, we explored whether thrombin regulates the secretion of MCP-1 in HTR-8/SVneo cells; if yes, what is its function? We used HTR-8/SVneo cells, developed from ?rst trimester villous explants of early pregnancy, as the model of EVTs. MCP-1 gene silencing was performed using gene-specific siRNA. qPCR and ELISA were performed to estimate the expression and secretion of MCP-1. Here, we found that thrombin enhanced the secretion of MCP-1 in HTR-8/SVneo cells. Proteinase-activated receptor-1 (PAR-1) was found as the primary receptor, regulating MCP-1 secretion in these cells. Furthermore, MCP-1 secretion is modulated via protein kinase C (PKC) α, β, and Rho/Rho-kinase-dependent pathways. Thrombin negatively regulates HTR-8/SVneo cells’ ability to mimic tube formation in an MCP-1 dependent manner. In conclusion, we propose that thrombin-controlled MCP-1 secretion may play an essential role in normal placental development and successful pregnancy maintenance. Improper thrombin production and MCP-1 secretion during pregnancy might cause inadequate vascular formation and transformation of spiral arteries, which may contribute to pregnancy disorders, such as preeclampsia.  相似文献   

5.
6.
During ovarian follicle growth, there is expansion of the basal lamina and changes in the follicular extracellular matrix (ECM) that are mediated in part by proteolytic enzyme cascades regulated by tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA). One PA inhibitor, serine protease inhibitor-E2 (SERPINE2) is expressed in granulosa but not theca cells, and expression changes with follicle development. In this study, we hypothesized that PA and SERPINE2 expression/secretion by granulosa cells are regulated by FSH and growth factors. SERPINE2 mRNA and protein levels, tPA gene expression and uPA secretion were stimulated by FSH. Insulin-like growth factor-I stimulated SERPINE2 secretion and uPA activity, and decreased secreted tPA activity and gene expression. Bone morphogenetic protein-7 increased SERPINE2 secretion and expression and tPA secretion. In contrast, fibroblast growth factor-2 inhibited tPA secretion and SERPINE2 secretion and expression. Epidermal growth factor inhibited SERPINE2 secretion and expression, but increased secreted tPA activity. Estradiol and SERPINE2 secretion were highly positively correlated, but estradiol did not alter SERPINE2 expression. These data demonstrate that SERPINE2 expression and protein secretion are regulated by FSH and growth factors in non-luteinizing bovine granulosa cells. As estradiol is a known marker of follicle health, and SERPINE2 is an anti-apoptotic factor, we propose that SERPINE2 is involved in the regulation of atresia in bovine follicles.  相似文献   

7.
Trophoblastic invasion and remodeling of the uteroplacental (spiral) arteries in primates are well-documented, but virally nothing is known of the early stages of these phenomena. Therefore, we examined invasion of the maternal vasculature in macaques and baboons at, and immediately following, implantation. Following penetration of the uterine epithelium (day 9), trophoblast spreads along the residual epithelial basal lamina. By day 10, cytoplasmic processes penetrate the epithelial and endothelial basal laminae, and syncytial trophoblast insinuates itself between maternal endothelial cells. As lacunae develop, both syncytial and cytotrophoblast are exposed to maternal blood. Endovascular cytotrophoblast was first observed in subepithelial dilated capillaries and venules. These vessels are lined by increasingly hypertrophied endothelial cells. The spiral arterioles are unmodified at this time. Particularly interesting was the observation that there is rapid extensive endovascular trophoblast invasion of the spiral arterioles immediately beneath the implantation site. By day 14-16 nearly all of the small arterioles directly beneath the site are completely occluded. There is no invasion of the veins in this region. Somewhat later, the deeper arterioles in the principal zone are invaded. Rather than a continuous stream of cells invading the deeper arterioles, these endovascular cells occur in clusters ranging from a few cells to groups of cells that completely plug the lumen. Our results indicate that trophoblastic invasion of maternal vessels occurs very early; and, at least initially, trophoblast can migrate between and along endothelial cells without causing their lysis. The endovascular cells eventually interrupt the endothelial lining of the arterioles and penetrate the walls of the vessels. The occlusion of arterioles underneath the site suggests that circulation through the lacunae at this stage is indirect. Corresponding stages of human development were examined, and no invasion of arterioles could be observed prior to formation of an extensive cytotrophoblastic shell.  相似文献   

8.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

9.
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase‐2 (COX‐2) protein and mRNA levels in lipopolysaccharide (LPS)‐activated RAW 264.7 cells in a dose‐dependent manner. Moreover, GM3 inhibited the expression and release of pro‐inflammatory cytokines of tumor necrosis factor‐alpha (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS‐induced nuclear translocation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and activator protein (AP)‐1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen‐activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS‐activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS‐induced inflammatory response in RAW 264.7 macrophages by suppression of NF‐κB, AP‐1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.  相似文献   

10.
Preeclampsia is a severe pregnancy complication that originates in the placenta and is characterized by shallow trophoblast invasion into the spiral arteries. Immunological imbalances associated with abnormal uterine spiral arteries remodeling during pregnancy have been identified to contribute to the onset and progression of preeclampsia. Interferon (IFN)-γ has a bilateral role in mediating uterine spiral artery remodeling and may lead to preeclampsia under abnormal circumstances. Until recently, the mechanism that regulates the balance between IFN-γ-mediated artery remodeling and IFN-γ-induced Th1 cell activation is ambiguous; but recent studies suggest an important part for galectin-9 in the immune regulation. Therefore, we hypothesize that the galectin-9 expression by uterine endometrial epithelial cells plays a key role in the regulation of the dual function of IFN-γ. Engaging galectin-9 with its receptor on activated Th1 cells causes an inhibitory signal, resulting in apoptosis of Th1 cells and negatively regulates Th1 type immunity. We further hypothesize that failure of galectin-9 expression by endometrial epithelial cells may dampen the endovascular remodeling process and thus result in preeclampsia. This hypothesis proposes a new mechanism in the immunological balance at the uteroplacental interface. Also this hypothesis will help to find out new cause for preeclamspsia and provide new strategy for disease treatment.  相似文献   

11.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

12.
Peroxiredoxin (PRX), a scavenger of H2O2 and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti‐oxidant roles, the involvement of PRX‐1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX‐1 having been uncovered only recently. In the present study, it was discovered that the PRX‐1 deficient macrophage like cell line (RAW264.7) has anti‐inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti‐inflammatory cytokine, interleukin‐10 (IL‐10), in PRX‐1 knock down RAW264.7 cells. Gene expression of pro‐inflammatory cytokines IL‐1β and tumor necrosis factor‐ α (TNF‐α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL‐10 was also increased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL‐10 would result in decreased expression of IL‐1β and TNF‐α in PRX‐1 knock‐down cells. This was confirmed by blocking IL‐10, which reestablished IL‐1β and TNF‐α secretion. We also observed that increased concentrations of IL‐10 do not affect the NF‐κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX‐1 knockdown RAW264.7 cells. Up‐regulation of IL‐10 in PRX‐1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down‐regulation of PRX‐1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.  相似文献   

13.
The GPI-anchored trypanosome variant surface glycoprotein (VSG) triggers macrophages to produce TNF, involved in trypanosomiasis-associated inflammation and the clinical manifestation of sleeping sickness. Aiming at inhibiting immunopathology during experimental Trypanosoma brucei infections, a VSG-derived GPI-based treatment approach was developed. To achieve this, mice were exposed to the GPI before an infectious trypanosome challenge. This GPI-based strategy resulted in a significant prolonged survival and a substantial protection against infection-associated weight loss, liver damage, acidosis, and anemia; the latter was shown to be Ab-independent and correlated with reduced macrophage-mediated RBC clearance. In addition, GPI-based treatment resulted in reduced circulating serum levels of the inflammatory cytokines TNF and IL-6, abrogation of infection-induced LPS hypersensitivity, and an increase in circulating IL-10. At the level of trypanosomiasis-associated macrophage activation, the GPI-based treatment resulted in an impaired secretion of TNF by VSG and LPS pulsed macrophages, a reduced expression of the inflammatory cytokine genes TNF, IL-6, and IL-12, and an increased expression of the anti-inflammatory cytokine gene IL-10. In addition, this change in cytokine pattern upon GPI-based treatment was associated with the expression of alternatively activated macrophage markers. Finally, the GPI-based treatment also reduced the infection-associated pathology in Trypanosoma congolense and Trypanosoma evansi model systems as well as in tsetse fly challenge experiments, indicating potential field applicability for this intervention strategy.  相似文献   

14.
Adrenomedullin enhances invasion by trophoblast cell lines   总被引:3,自引:0,他引:3  
We have tested the hypothesis that adrenomedullin (ADM), a multifunctional peptide hormone, works as a trophoblast proinvasion factor. Our results showed that ADM receptor components-the mRNA and proteins of calcitonin receptor-like receptor (CALCRL) and receptor activity modifying proteins (RAMPs)-were expressed by human choriocarcinoma JAr cells and first-trimester cytotrophoblast HTR-8/SV neo cells. ADM stimulates both JAr and HTR-8/SV neo cell proliferation. The invasion capabilities of JAr cells and HTR-8/SV neo cells were also enhanced by ADM, and this was associated with increased gelatinolytic activity and reduced plasminogen activator inhibitor-1 mRNA expression (SERPINE1). Our data support the notion that ADM may be involved in the human implantation process via regulating trophoblast proliferation and differentiation.  相似文献   

15.
The ability of acetyl-LDL to stimulate macrophage-dependent plasminogen activation and degradation of extracellular matrix was examined. We have found that expression of plasminogen activator activity in response to the scavenger receptor ligand varied among cell populations. Exposure to acetyl-LDL stimulated plasminogen activator expression by cells which constitutively released low levels of activator. These include a virally transformed macrophage-like cell line (RAW246.7), concanavalin A and C. parvum-activated macrophages. The stimulation of plasminogen activator activity was independent of cellular lipid accumulation since nonlipoprotein inhibitors of acetyl-LDL binding to the scavenger receptor stimulated activator expression in great excess to that observed with acetyl-LDL. In contrast, acetyl-LDL was unable to induce soluble plasminogen activator activity in cells which normally do not express it. These include a macrophage-like cell line (J774A.1) and resident peritoneal macrophages. Furthermore, acetyl-LDL was unable to modulate the copious secretion of activator by inflammatory macrophages elicited with thioglycolate. When macrophages were tested for their ability to degrade smooth muscle cell derived matrix, solubilization by resident, elicited, and activated cells was variously increased in the presence of plasminogen. Furthermore, exposure to acetyl-LDL enhanced plasmin-dependent degradation by resident cells and activated cells, whereas matrix degradation by elicited cells was unaffected.  相似文献   

16.
Trophoblast implantation depends, in part, on the controlled production of plasmin from plasminogen, a process regulated by plasminogen activators and plasminogen activator inhibitors. We have determined that angiotensin II (Ang II) stimulates plasminogen activator inhibitor-1 (PAI-1) synthesis and secretion in human trophoblasts in a time- and concentration-dependent manner. Our results indicate that Ang II activates PAI-1 gene expression through the AT1 receptor and involves the calcium-dependent activation of calcineurin and the nuclear translocation of NFAT. Increased PAI-1 synthesis and secretion is associated with reduced trophoblast invasion as judged by an in vitro invasion assay. These studies are the first to link the renin-angiotensin system with the fibrinolytic system to regulate trophoblast invasion.  相似文献   

17.
Probucol, 4,4'-(isopropylidenedithio)bis(2,6-di-tert-butyl-phenol), has been shown to inhibit atherogenesis in genetically hypercholesterolemic (Watanabe) rabbits. Since atherosclerotic lesions contain macrophages capable of screting interleukin 1 (IL 1) and other cytokines that could contribute to the pathogenesis of the disease, we have investigated whether probucol affects IL 1 secretion. Resident peritoneal macrophages from mice dosed with probucol secreted 40-80% less IL 1 than macrophages from control animals when stimulated in vitro with lipopolysaccharide (LPS). The inhibitory effect of probucol was observed when IL 1 was assayed by the standard bioassay, the thymocyte proliferation assay, or a competitive IL 1 receptor binding assay. Probucol treatment had no effect on LPS-induced membrane IL 1 expression; secretion of tumor necrosis factor (TNF); Con A-induced splenic interleukin 2 (IL 2) and interleukin 3 (IL 3) release; and prostaglandin- or zymosan-induced secretion of prostacyclin, leukotriene C4, acid phosphatase, or superoxide anion. In contrast to the effect of oral administration, direct addition of probucol to macrophage cultures did not inhibit IL 1 release. Probucol administration did, however, inhibit the fall in serum zinc level induced by intravenous injection of LPS in zymosan-primed mice but had no effect on the LPS-induced increase in serum triglyceride levels, which indirectly confirms that probucol administration inhibits IL 1 but not TNF secretion. Paw granuloma induced in mice by heat-killed mycobacteria was inhibited by oral administration of probucol, an effect that may be attributable to inhibition of IL 1 secretion. Probucol neither reduced zymosan-induced liver granulomata in mice nor inhibited adjuvant-induced arthritis in rats. We suggest that inhibition of IL 1 secretion from macrophages by probucol contributes to its therapeutic effects in atherosclerosis and may also result in beneficial activity in some chronic inflammatory diseases.  相似文献   

18.
Invasion of extravillous trophoblast cells into the uterus in human pregnancy is tightly regulated. The transforming growth factor-beta (TGFB) family has been suggested to play a role in controlling this process. We hypothesized that TGFB1, 2, and 3 would inhibit the invasive capacity of extravillous trophoblast cells. We also studied trophoblast apoptosis and proliferation and secreted protease levels as potential mechanisms by which these cytokines may act. Inhibition of endogenous TGFB1, 2, and 3 with neutralizing antibodies increased the invasive capacity of extravillous trophoblast cells derived from placental explants. Similarly, addition of exogenous TGFB1, 2, and 3 inhibited the invasive capacity of these cells in a dose-dependent manner. Proliferation of trophoblast in the placental explants did not alter in response to any of the cytokines tested. Apoptosis of villous and extravillous trophoblast did not alter in response to TGFB1, 2, and 3. There was a reduction in secreted levels of matrix metalloproteinase (MMP) 9 and urokinase plasminogen activator in response to all three cytokines. MMP2 and tissue inhibitor of metalloproteinase 1 and 3 levels were not altered. These results suggest that TGFB1, 2, and 3 inhibit trophoblast invasion by a mechanism dependent on reduced protease activity.  相似文献   

19.
Balanced immune responses are essential for the maintenance of successful pregnancy. Aberrant responses of immune system during pregnancy increase the risk of preeclampsia. Toll-like receptor 4 (TLR4) plays a crucial role in the activation of immune system at the maternal-fetal interface. This study aimed to generate a rat model of preeclampsia by lipopolysaccharide (LPS, a TLR4 agonist) administration on gestational day (GD) 5 as rats are subjected to placentation immediately after implantation between GDs 4 and 5, and to assess the contribution of TLR4 signaling to the development of preeclampsia. Single administration of 0.5 μg/kg LPS significantly increased blood pressure of pregnant rats since GD 6 (systolic blood pressure, 124.89 ± 1.79 mmHg versus 119.02 ± 1.80 mmHg, P < 0.05) and urinary protein level since GD 9 (2.02 ± 0.29 mg versus 1.11 ± 0.18 mg, P < 0.01), but barely affected blood pressure or proteinuria of virgin rats compared with those of saline-treated pregnant rats. This was accompanied with adverse pregnancy outcomes including fetal growth restriction. The expression of TLR4 and NF-κB p65 were both increased in the placenta but not the kidney from LPS-treated pregnant rats, with deficient trophoblast invasion and spiral artery remodeling. Furthermore, the levels of inflammatory cytokines were elevated systemically and locally in the placenta from pregnant rats treated with LPS. TLR4 signaling in the placenta was activated, to which that in the placenta of humans with preeclampsia changed similarly. In conclusion, LPS administration to pregnant rats in early pregnancy could elicit TLR4-mediated immune response at the maternal-fetal interface contributing to poor early placentation that may culminate in the preeclampsia-like syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号