首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (~74, ~55, ~54, and ~37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokházi, G. Kóczán, F. Hudecz, L. Gráf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.  相似文献   

2.
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10 degrees C the activity was highest and remained constant for over 7 days, whereas at 23 and 28 degrees C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50 degrees C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80 degrees C and was optimal at pH 7 and 50 degrees C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.  相似文献   

3.
The commencement of intracellular protease synthesis was studied by gelatin zymography in Bacillus thuringiensis ( Btk) HD1, Btk HD73, and a protease-deficient mutant Btk-q derived from the former strain. By gelatin zymography, a 92-kDa protease was detected first at 3 h of sporulation, which continued until 48 h, whereas two other proteases of mol wt 78 and 69 kDa were detectable from 6 h onwards and continued until 48 h of growth in Btk HD1. Similar studies revealed the presence of two major intracellular proteases in Btk HD73 by gelatin zymography, which first appeared at 6 h of sporulation and continued until 48 h of growth. The quantitative azocasein assay confirmed that the total protease activity increases from 3 to 21 h, thereafter reaching a plateau up to 48 h of growth examined, in HD1 and HD73 strains. Btk-q, a protease-deficient mutant, showed traces of protease activity by azocasein analysis that could not be detected by gelatin zymography. The free amino acid pool content was also increased parallel to the way that the protease activity increased in all three strains. However, this increase was found to be low (16-fold) in Btk-q when compared with Btk HD1 and HD73 strains. The following amino acids were detected by paper chromatography in Btk HD1: DL-alanine, L-glutamic acid, L-aspartic acid, tyrosine, tryptophan/methionine/valine, arginine, leucine/norleucine/isoleucine, and glycine, whereas only DL-alanine, L-glutamic acid, and L-aspartic acid were in Btk-q at 24 and 48 h, when the protease activity was maximum.  相似文献   

4.
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.Xenorhabdus and Photorhabdus bacteria are highly virulent, fatal pathogens for insects. Phylogenetically, they are sister genera in the family Enterobacteriaceae (3, 4). There are some differences between Xenorhabdus and Photorhabdus in their biology (e.g., light production), and they also differ in their interaction with their symbiotic nematode partners, which are in the Steinernematidae and Heterorhabditidae genera, respectively (8, 9). At the same time, they also have several properties in common. For example, due to their similar strategy of infection, their entrance into the hemocoel is absolutely dependent on the invasion of insects by their symbiotic nematode partners. An interesting feature of both genera is that they have two phenotypic (form) variants, primary and secondary (9). The primary form is natural, while the secondary form can be observed (generated) mostly in the laboratory. They differ in, for example, antibiotic production, outer membrane proteins, and cell surface structures (fimbriae and flagellae [23], symbiotic capabilities with nematode partners, and exoenzyme production [9]). The secondary form variants were found, with nonbiochemical detection methods, to produce less or no proteolytic activity compared to the primary phenotypic variants (see references 9 and 23 and references therein). The high pathogenicity makes Xenorhabdus and Photorhabdus good model organisms of infection, which can be exploited—by studying the function of their virulence factors—for the investigation of the immune system of insects and the mechanisms the pathogens use to cope with the immune defense of hosts. The comparative analysis of these bacterial partners provides an opportunity to study the question of how similar the infection mechanisms can be at the molecular level of two evolutionarily different insect pathogen bacterium-nematode complexes that, at the same time, have similar infection strategies.Of the virulence factors, we have been interested in secreted proteases that may be used by the pathogens during the first stage of infection in the penetration of the tissues of host or in the suppression of its immune response. The secretion and biochemistry of these enzymes are better studied in Photorhabdus, where four secreted proteases could be detected in a screen of 20 strains by a combination of five methods (15). The earliest secreted Photorhabdus protease is PrtA peptidase, a metzincin in the M10B family of serralysins. The others are PhpC (Photorhabdus protease C), which belongs to the M4 metallopeptidase family of thermolysin-like proteases, OpdA, a collagen peptidase in the family of thimet oligopeptidases and PhpD, a furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY)-cleaving enzyme, the identity of which is still unknown. In contrast, although a number of Xenorhabdus strains were tested for proteolytic activity with simple bacteriological plate assays (2, 25), only one (Xenorhabdus nematophila) was investigated by a biochemical detection method of protease activities, zymography. Two activities have been found by this method, and one of these activities has been partially characterized (5).As an approach to establish the similarity between Xenorhabdus and Photorhabdus in the mechanism of infection regarding the type and role of proteolytic enzymes, we investigated 15 Xenorhabdus strains for the secretion of proteases employing the same five detection methods that we had previously used for Photorhabdus strains. Two of the strains (Xenorhabdus nematophila AN6 and Xenorhabdus cabanillassii RIO-HU) were represented with their phenotypic variant pairs.  相似文献   

5.
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10°C the activity was highest and remained constant for over 7 days, whereas at 23 and 28°C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50°C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80°C and was optimal at pH 7 and 50°C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.  相似文献   

6.
The activities of digestive protease within the midgut of Mamestra configurata (bertha armyworm) larvae were examined using specific substrates and protease inhibitors. The bulk of the activity was associated with serine proteases comprising trypsin-, chymotrypsin-, and elastase-like enzymes. At least 10-15 serine protease isozymes were detected using one-dimension gelatin gel electrophoresis. Cysteine or aspartic protease activities were not present; however, amino- and carboxypeptidase activities were associated with the midgut extract. Midgut proteases were active in the pH range of 5.0-12.0 with peaks at pH 7.5 and 11.0. In general, the middle region of the midgut exhibited a higher pH (approximately 8.0) than either the posterior or anterior regions (approximately 7.3-7.7). Moulting larvae possessed a neutral gut pH that was 0.5-1.5 units below that of feeding larvae. Degenerate PCR and expressed sequence tag (EST)-based approaches were used to isolate 30 distinct serine protease encoding cDNAs from a midgut-specific cDNA library including 8 putative trypsins, 9 chymotrypsins, 1 elastase, and 12 whose potential activities could not be determined. cDNAs encoding three amino- and two carboxypeptidases were also identified. Larvae feeding upon artificial diet containing 0.2% soybean trypsin inhibitor experienced a significant delay in development.  相似文献   

7.
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases.  相似文献   

8.
The aim of this study was the development of a sensitive and specific substrate for protease A (PrtA), a serralysin-like metzincin from the entomopathogenic microorganism, Photorhabdus. First, cleavage of three biological peptides, the A and B chains of insulin and beta-lipotropin, and of 15 synthetic peptides, was investigated. In the biological peptides, a preference for the hydrophobic residues Ala, Leu and Val was observed at three substrate positions, P2, P1' and P2'. At these positions in the synthetic peptides the preferred residues were Val, Ala and Val, respectively. They contributed to the efficiency of hydrolysis in the order P1' > P2 > P2'. Six amino acids of the synthetic peptides were sufficient to reach the maximum rate of hydrolysis, in accordance with the ability of PrtA to cleave three amino acids from both the N- and the C-terminus of some fragments of biological peptides. Using the best synthetic peptide, a fluorescence-quenched substrate, N-(4-[4'(dimethylamino)phenylazo]benzoyl-EVYAVES-5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was prepared. The approximately 4 x 10(6) M(-1) x s(-1) specificity constant of PrtA (at K(m) approximately 5 x 10(-5) M and k(cat) approximately 2 x 10(2) s(-1)) on this substrate was the highest activity for a serralysin-type enzyme, allowing precise measurement of the effects of several inhibitors and pH on PrtA activity. These showed the characteristics of a metalloenzyme and a wide range of optimum pH, similar to other serralysins. PrtA activity could be measured in biological samples (Photorhabdus-infected insect larvae) without interference from other enzymes, which indicates that substrate selectivity is high towards PrtA. The substrate sensitivity allowed early (14 h post infection) detection of PrtA, which might indicate PrtA's participation in the establishment of infection and not only, as it has been supposed, in bioconversion.  相似文献   

9.
The commencement of intracellular protease synthesis was studied by gelatin zymography in Bacillus thuringiensis (Btk) HD1, Btk HD73, and a protease-deficient mutant Btk-q derived from the former strain. By gelatin zymography, a 92-kDa protease was detected first at 3 h of sporulation, which continued until 48 h, whereas two other proteases of mol wt 78 and 69 kDa were detectable from 6 h onwards and continued until 48 h of growth in Btk HD1. Similar studies revealed the presence of two major intracellular proteases in Btk HD73 by gelatin zymography, which first appeared at 6 h of sporulation and continued until 48 h of growth. The quantitative azocasein assay confirmed that the total protease activity increases from 3 to 21 h, thereafter reaching a plateau up to 48 h of growth examined, in HD1 and HD73 strains. Btk-q, a protease-deficient mutant, showed traces of protease activity by azocasein analysis that could not be detected by gelatin zymography. The free amino acid pool content was also increased parallel to the way that the protease activity increased in all three strains. However, this increase was found to be low (16-fold) in Btk-q when compared with Btk HD1 and HD73 strains. The following amino acids were detected by paper chromatography in Btk HD1: DL-alanine, L-glutamic acid, L-aspartic acid, tyrosine, tryptophan/methionine/valine, arginine, leucine/norleucine/isoleucine, and glycine, whereas only DL-alanine, L-glutamic acid, and L-aspartic acid were in Btk-q at 24 and 48 h, when the protease activity was maximum. Received: 4 January 2002 / Accepted: 6 March 2002  相似文献   

10.
11.
Both the bacterium Photorhabdus luminescens alone and its symbiotic Photorhabdus-nematode complex are known to be highly pathogenic to insects. The nature of the insecticidal activity of Photorhabdus bacteria was investigated for its potential application as an insect control agent. It was found that in the fermentation broth of P. luminescens strain W-14, at least two proteins, toxin A and toxin B, independently contributed to the oral insecticidal activity against Southern corn rootworm. Purified toxin A and toxin B exhibited single bands on native polyacrylamide gel electrophoresis and two peptides of 208 and 63 kDa on SDS-polyacrylamide gel electrophoresis. The native molecular weight of both the toxin A and toxin B was determined to be approximately 860 kDa, suggesting that they are tetrameric. NH2-terminal amino acid sequencing and Western analysis using monospecific antibodies to each toxin demonstrated that the two toxins were distinct but homologous. The oral potency (LD50) of toxin A and toxin B against Southern corn rootworm larvae was determined to be similar to that observed with highly potent Bt toxins against lepidopteran pests. In addition, it was found that the two peptides present in toxin B could be processed in vitro from a 281-kDa protoxin by endogenous P. luminescens proteases. Proteolytic processing was shown to enhance insecticidal activity.  相似文献   

12.
Photorhabdus luminescens secretes both high molecular weight insecticidal toxin complexes and also a range of extracellular proteases into culture broth. Previous studies by others have suggested that insecticidal activity of the broth is associated with these proteases. However, by gene cloning and targeted knock-out, we have previously shown that oral insecticidal activity is associated with high molecular weight 'toxin complexes' (Tc) encoded by toxin complex or tc genes. Here we further clarify this distinction by biochemically separating the protease fractions away from the oral insecticidal activity of the Tc proteins. We purified three distinct protease fractions from the broth: one consisting of a single species of 55 kDa and two of several putatively related species of approximately 40 kDa. All of these clearly separate from the oral insecticidal activity associated with the high molecular weight Tc proteins and also show no effect on insect weight gain following injection into the haemocoel. Here we examine the substrate preferences and inhibitor profiles of these protease fractions and discuss their relationship with those previously described from other P. luminescens strains and phase variants.  相似文献   

13.
Extracellular protease activity was detected in serum-free culture filtrates of Trichomonas vaginalis. The activity was demonstrated by hydrolysis of hide powder azure and possessed the characteristics of cysteine type proteases: inhibition by N-ethyl maleimide, Cu2+, antipain, N-tosyl-L-phenylalanine chloromethyl ketone, N-tosyl-L-lysine chloromethyl ketone, leupeptin, chymostatin, and iodoacetamide, and enhancement by cysteine, EDTA, and dithiothreitol. The activity was optimal at acid pH and the protease was also active on peptide nitroanilides with arginine derivatives. Purification of this activity by ethanol precipitation, ammonium sulfate fractionation, ion exchange chromatography, and gel filtration resulted in the isolation of two proteases estimated by sodium dodecyl sulfate - polyacrylamide gel electrophoresis to have molecular masses of 60 and 30 kilodaltons (kDa), respectively. The larger molecular mass protease broke down during purifications to two subunits of approximately 23 and 43 kDa, as determined by gel electrophoresis. Rabbit sera derived by immunization with the 23-kDa subunit cross-reacted by immunoblot with the 60- and 43-kDa subunits, but not with the 30-kDa protease. These soluble products of T. vaginalis growth could be important pathogenically in establishing T. vaginalis infection in the normally acid (pH less than or equal to 4.5) environment of the vagina.  相似文献   

14.
Bacillus cereus KCTC 3674 excretes several kinds of extracellular proteases into the growth medium. Two proteases with molecular masses of approximately 36-kDa and 38-kDa, as shown by SDS-PAGE, were purified from the culture broth. The 38-kDa protease was purified from B. cereus cultivated at 37 degrees C, and the 36-kDa protease was obtained from the B. cereus cultivated at 20 degrees C. The 38-kDa protease was identified as an extracellular neutral (metallo-) protease and was further characterized. The 36-kDa protease was shown to be a novel enzyme based on its N-terminal amino acid sequence, its identification as a metallo-enzyme that was strongly inhibited by EDTA and o-phenanthroline, its hemolysis properties, and its optimal pH and temperature for activity of 8.0 and 70 degrees C, respectively.  相似文献   

15.
Proteolytic activity and a subtilisin inhibitor (NSI) were detected in Natrialba magadii cells. The proteolytic activity was due to two different proteases: a ∼90-kDa metallo protease (NMP) produced during exponential growth and a 246-kDa serine protease (NSP) detected in the stationary phase. Both proteases were detected in the cytosolic fraction. NSI activity was maximal during early stages of growth and decreased in the stationary phase. NSI is a 35-kDa thermosensitive protein; it inhibits NSP activity but has no effect on NMP, and it was detected as a soluble or membrane-bound protein depending on the growth phase. Our results suggest that NSI may regulate NSP activity in vivo and that this protease may have a role in stationary phase cells. To our knowledge, this is the first report on the occurrence of protease inhibitors in Archaea. Received: 4 May 2002 / Accepted: 10 July 2002  相似文献   

16.
Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.  相似文献   

17.
Plasminogen activator (PA) activities were measured in the rat prostatic complex and individual prostatic lobes during early postnatal and pubertal development and in sexually mature adult rats. There was no significant change in PA activity during postnatal prostate development. However, during sexual maturation with puberty, there was a decline in PA activity in the ventral (3-fold), dorsolateral (22-fold), and anterior (19-fold) prostate lobes when activity was expressed per unit protein. A decrease in activity of 25- and 11-fold was found for the dorsolateral and anterior lobes, respectively, when activity was expressed per unit DNA. There was no change in activity in the ventral lobe. The adult ventral prostate (and its secretion) have 3 broad bands of low molecular mass (approximately 23 and 26-32 kDa) plasminogen-independent protease activities. Proteases of these molecular sizes as well as an activity of 170 kDa were detected in the dorsolateral prostate. The former proteases in the ventral and dorsolateral lobes were first found at 21 days of age, whereas the 170 kDa protease was found in dorsolateral prostate immediately post-puberty (48 days). The low molecular mass plasminogen-independent proteases were also able to activate plasminogen (determined by zymography) and hence contribute to the total measured PA activity. Thus, at 21 days of age, the specific activity of plasminogen-dependent protease declined, since the total measured PA-specific activity did not change. Plasminogen-dependent activities in ventral, dorsolateral, and anterior prostate lobes of adult rats were found as doublets of approximately 57-59 kDa and 36-38 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mip (macrophage infectivity potentiator) and Mip-like proteins have been demonstrated to be involved in virulence of several animal pathogens, but as yet none of their native bacterial targets has been identified. Our previous work demonstrated that the Mip-like protein found in the plant pathogen Xanthomonas campestris pv. campestris (Xcc) (hereafter called Mip(Xcc)) is also involved in virulence. Inactivation of the mip(Xcc) gene leads to a significant reduction in exopolysaccharide production and extracellular protease activity via an unknown mechanism. The Xcc genome encodes six extracellular proteases, all of which are secreted via the type II secretion system. The serine protease PrtA makes the largest contribution to Xcc's total extracellular proteolytic activity. In this study, Western blotting analysis demonstrated that Mip(Xcc) was located in the periplasm. Bacterial two-hybrid and far-Western analysis indicated that Mip(Xcc) interacted with PrtA directly. Purified Mip(Xcc) was found to be able to rescue the protease activity of periplasmic proteins extracted from the mip(Xcc) mutant. These findings show that Mip(Xcc) plays a role in the maturation of PrtA, which is the novel native target for at least one Mip or Mip-like protein.  相似文献   

19.
Xylella fastidiosa is a pathogenic bacterium found in several plants. These bacteria secrete extracellular proteases into the culture broth as visualized in sodium-dodecyl-sulfate polyacrylamide activity gels containing gelatin as a copolymerized substrate. Three major protein bands were produced by the citrus strain with molar masses (MM) of 122, 84 and 65 kDa. Grape strain 9,713 produced two bands of approximately 84 and 64 kDa. These organisms produced zones of hydrolysis in agar plates amended with gelatin, casein and hemoglobin. Gelatin was the best substrate for these proteases. Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) activity gel indicated that the protease of Xylella fastidiosa from citrus and grape were completely inhibited by PMSF and partially inhibited by EDTA. The optimal temperature for protease activity was 30 degrees C with an optimal pH of 7.0. Among the proteolytic enzymes secreted by the phytopathogen, chitinase and beta-1,3-glucanase activities were also detected in cultures of Xylella fastidiosa (citrus). From these results, it is suggested that proteases produced by strains of Xylella fastidiosa from citrus and grape, belong to the serine- and metallo-protease group, respectively.  相似文献   

20.
The intracellular proteases in sporulated Bacillus thuringiensis subsp. kurstaki were studied to identify the endogenous proteases involved in the activation of protoxin. The proteases obtained with 30% ammonium sulfate saturation were analysed by both gelatin zymography and azocasein hydrolysis. Three proteases with molecular mass 92 kDa, 78 kDa and 69 kDa were identified on gelatin gel and their gelatinolytic activity was inhibited by ethylenediamine tetraacetic acid. Significantly, 1,10-phenanthroline caused an inhibition of the azocasein hydrolytic activity by 98% and ethylenediamine tetraacetic acid by 28%. The three proteases were heat-stable at 65 °C, while the 69-kDa protease was active up to 75 °C. Intracellular protease-deficient mutants (ethyl methanesulfonate mutagenesis) could not generate the active toxin suggesting the existence of a specific enzyme affecting the conversion of protoxin to toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号