首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanog and FAK were shown to be overexpressed in cancer cells. In this report, the Nanog overexpression increased FAK expression in 293, SW480, and SW620 cancer cells. Nanog binds the FAK promoter and up-regulates its activity, whereas Nanog siRNA decreases FAK promoter activity and FAK mRNA. The FAK promoter contains four Nanog-binding sites. The site-directed mutagenesis of these sites significantly decreased up-regulation of FAK promoter activity by Nanog. EMSA showed the specific binding of Nanog to each of the four sites, and binding was confirmed by ChIP assay. Nanog directly binds the FAK protein by pulldown and immunoprecipitation assays, and proteins co-localize by confocal microscopy. Nanog binds the N-terminal domain of FAK. In addition, FAK directly phosphorylates Nanog in a dose-dependent manner by in vitro kinase assay and in cancer cells in vivo. The site-directed mutagenesis of Nanog tyrosines, Y35F and Y174F, blocked phosphorylation and binding by FAK. Moreover, overexpression of wild type Nanog increased filopodia/lamellipodia formation, whereas mutant Y35F and Y174F Nanog did not. The wild type Nanog increased cell invasion that was inhibited by the FAK inhibitor and increased by FAK more significantly than with the mutants Y35F and Y174F Nanog. Down-regulation of Nanog with siRNA decreased cell growth reversed by FAK overexpression. Thus, these data demonstrate the regulation of the FAK promoter by Nanog, the direct binding of the proteins, the phosphorylation of Nanog by FAK, and the effect of FAK and Nanog cross-regulation on cancer cell morphology, invasion, and growth that plays a significant role in carcinogenesis.  相似文献   

2.
Global histone H1 phosphorylation correlates with cell cycle progression. However, the function of site-specific H1 variant phosphorylation remains unclear. Our mass spectrometry analysis revealed a novel N-terminal phosphorylation of the major H1 variant H1.4 at serine 35 (H1.4S35ph), which accumulates at mitosis immediately after H3 phosphorylation at serine 10. Protein kinase A (PKA) was found to be a kinase for H1.4S35. Importantly, Ser-35-phosphorylated H1.4 dissociates from mitotic chromatin. Moreover, H1.4S35A substitution mutant cannot efficiently rescue the mitotic defect following H1.4 depletion, and inhibition of PKA activity increases the mitotic chromatin compaction depending on H1.4. Our results not only indicate that PKA-mediated H1.4S35 phosphorylation dissociates H1.4 from mitotic chromatin but also suggest that this phosphorylation is necessary for specific mitotic functions.  相似文献   

3.
4.
Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.x) channels that underlie the classical inward rectifier current, IK1. To investigate the functional effects of silencing SAP97 on IK1 in adult rat ventricular myocytes, SAP97 was silenced using an adenoviral short hairpin RNA vector. Western blot analysis showed that SAP97 was silenced by ∼85% on day 3 post-infection. Immunostaining showed that Kir2.1 and Kir2.2 co-localize with SAP97. Co-immunoprecipitation (co-IP) results demonstrated that Kir2.x channels associate with SAP97. Voltage clamp experiments showed that silencing SAP97 reduced IK1 whole cell density by ∼55%. IK1 density at −100 mV was −1.45 ± 0.15 pA/picofarads (n = 6) in SAP97-silenced cells as compared with −3.03 ± 0.37 pA/picofarads (n = 5) in control cells. Unitary conductance properties of IK1 were unaffected by SAP97 silencing. The major mechanism for the reduction of IK1 density appears to be a decrease in Kir2.x channel abundance. Furthermore, SAP97 silencing impaired IK1 regulation by β1-adrenergic receptor (β1-AR) stimulation. In control, isoproterenol reduced IK1 amplitude by ∼75%, an effect that was blunted following SAP97 silencing. Our co-IP data show that β1-AR associates with SAP97 and Kir2.1 and also that Kir2.1 co-IPs with protein kinase A and β1-AR. SAP97 immunolocalizes with protein kinase A and β1-AR in the cardiac myocytes. Our results suggest that in cardiac myocytes SAP97 regulates surface expression of channels underlying IK1, as well as assembles a signaling complex involved in β1-AR regulation of IK1.  相似文献   

5.
Protein kinase C-related protein kinases (PRKs) are effectors of the Rho family of small GTPases and play a role in the development of diseases such as prostate cancer and hepatitis C. Here we examined the mechanism underlying the regulation of PRK2 by its N-terminal region. We show that the N-terminal region of PRK2 prevents the interaction with its upstream kinase, the 3-phosphoinositide-dependent kinase 1 (PDK1), which phosphorylates the activation loop of PRK2. We confirm that the N-terminal region directly inhibits the kinase activity of PRK2. However, in contrast to previous models, our data indicate that this inhibition is mediated in trans through an intermolecular PRK2-PRK2 interaction. Our results also suggest that amino acids 487-501, located in the linker region between the N-terminal domains and the catalytic domain, contribute to the PRK2-PRK2 dimer formation. This dimerization is further supported by other N-terminal domains. Additionally, we provide evidence that the region C-terminal to the catalytic domain intramolecularly activates PRK2. Finally, we discovered that the catalytic domain mediates a cross-talk between the inhibitory N-terminal region and the activating C-terminal region. The results presented here describe a novel mechanism of regulation among AGC kinases and offer new insights into potential approaches to pharmacologically regulate PRK2.  相似文献   

6.
Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.  相似文献   

7.
Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family, which acts as cellular energy sensors. In this study, MPK38-induced PDK1 phosphorylation was examined to elucidate the biochemical mechanisms underlying phosphorylation-dependent regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) activity. The results showed that MPK38 interacted with and inhibited PDK1 activity via Thr(354) phosphorylation. MPK38-PDK1 complex formation was mediated by the amino-terminal catalytic kinase domain of MPK38 and the pleckstrin homology domain of PDK1. This activity was dependent on insulin, a PI3K/PDK1 stimulator, as well as various apoptotic stimuli, including TNF-α, H(2)O(2), thapsigargin, and ionomycin. MPK38 inhibited PDK1 activity in a kinase-dependent manner and alleviated PDK1-mediated suppression of TGF-β (or ASK1) signaling, probably via the phosphorylation of PDK1 at Thr(354). In addition, MPK38-mediated inhibition of PDK1 activity was accompanied by the modulation of PDK1 binding to its positive and negative regulators, serine/threonine kinase receptor-associated protein and 14-3-3, respectively. Together, these findings suggest an important role for MPK38-mediated phosphorylation of PDK1 in the negative regulation of PDK1 activity.  相似文献   

8.
9.
We examined the effects of adipose triglyceride lipase (ATGL) on the initiation of atherosclerosis. ATGL was recently identified as a rate-limiting triglyceride (TG) lipase. Mutations in the human ATGL gene are associated with neutral lipid storage disease with myopathy, a rare genetic disease characterized by excessive accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, shows massive TG accumulation in both coronary atherosclerotic lesions and the myocardium. Recent reports show that myocardial triglyceride content is significantly higher in patients with prediabetes or diabetes and that ATGL expression is decreased in the obese insulin-resistant state. Therefore, we investigated the effect of decreased ATGL activity on the development of atherosclerosis using human aortic endothelial cells. We found that ATGL knockdown enhanced monocyte adhesion via increased expression of TNFα-induced intercellular adhesion molecule-1 (ICAM-1). Next, we determined the pathways (MAPK, PKC, or NFκB) involved in ICAM-1 up-regulation induced by ATGL knockdown. Both phosphorylation of PKC and degradation of IκBα were increased in ATGL knockdown human aortic endothelial cells. In addition, intracellular diacylglycerol levels and free fatty acid uptake via CD36 were significantly increased in these cells. Inhibition of the PKC pathway using calphostin C and GF109203X suppressed TNFα-induced ICAM-1 expression. In conclusion, we showed that ATGL knockdown increased monocyte adhesion to the endothelium through enhanced TNFα-induced ICAM-1 expression via activation of NFκB and PKC. These results suggest that reduced ATGL expression may influence the atherogenic process in neutral lipid storage diseases and in the insulin-resistant state.  相似文献   

10.
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.  相似文献   

11.
Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.  相似文献   

12.
cAMP is an ubiquitous second messenger. Localized areas with high cAMP concentration, i.e. cAMP microdomains, provide an elegant mechanism to generate signaling specificity and transduction efficiency. However, the mechanisms underlying cAMP effector targeting into these compartments is still unclear. Here we report the identification of radixin as a scaffolding unit for both cAMP effectors, Epac and PKA. This complex localizes in a submembrane compartment where cAMP synthesis occurs. Compartment disruption by shRNA and dominant negative approaches negatively affects cAMP action. Inhibition can be rescued by expression of Rap1b, a substrate for both Epac1 and PKA, but only in its GTP-bound and phosphorylated state. We propose that radixin scaffolds both cAMP effectors in a functional cAMP-sensing compartment for efficient signal transduction, using Rap1 as a downstream signal integrator.  相似文献   

13.
The DNA binding activity of NF-κB is critical for VCAM-1 expression during inflammation. DNA-dependent protein kinase (DNA-PK) is thought to be involved in NF-κB activation. Here we show that DNA-PK is required for VCAM-1 expression in response to TNF. The phosphorylation and subsequent degradation of I-κBα as well as the serine 536 phosphorylation and nuclear translocation of p65 NF-κB were insufficient for VCAM-1 expression in response to TNF. The requirement for p50 NF-κB in TNF-induced VCAM-1 expression may be associated with its interaction with and phosphorylation by DNA-PK, which appears to be dominant over the requirement for p65 NF-κB activation. p50 NF-κB binding to its consensus sequence increased its susceptibility to phosphorylation by DNA-PK. Additionally, DNA-PK activity appeared to increase the association between p50/p50 and p50/p65 NF-κB dimers upon binding to DNA and after binding of p50 NF-κB to the VCAM-1 promoter. Analyses of the p50 NF-κB protein sequence revealed that both serine 20 and serine 227 at the amino terminus of the protein are putative sites for phosphorylation by DNA-PK. Mutation of serine 20 completely eliminated phosphorylation of p50 NF-κB by DNA-PK, suggesting that serine 20 is the only site in p50 NF-κB for phosphorylation by DNA-PK. Re-establishing wild-type p50 NF-κB, but not its serine 20/alanine mutant, in p50 NF-κB(-/-) fibroblasts reversed VCAM-1 expression after TNF treatment, demonstrating the importance of the serine 20 phosphorylation site in the induction of VCAM-1 expression. Together, these results elucidate a novel mechanism for the involvement of DNA-PK in the positive regulation of p50 NF-κB to drive VCAM-1 expression.  相似文献   

14.
15.
16.
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.  相似文献   

17.
Hyperglycemia is the major cause of diabetic angiopathy. Aim of our study was to evaluate the impact of high glucose on cell growth and function of human "diabetic" endothelial cells (EC). Incubation of non-diabetic EC with glucose moderately inhibited cell growth and increased the expression of ICAM-1 and E-selectin. In the disease-specific EC, glucose treatment resulted also in moderately inhibited cell growth by 5-10%, increased basal expression of VCAM-1 by 10-20%, and an enhanced release of monocyte-chemoattractant-protein-1 (MCP-1) by 40-70%. The expression of ICAM-1 and E-selectin and the release of IL-6 and IL-8 was not affected. The usage of our disease-specific EC model might evaluate the impact of systemic factors of diabetic patients in the progression of endothelial dysfunction, and may be suitable to develop relevant therapeutic regimens.  相似文献   

18.
The nonstructural protein NS1 of influenza A virus blocks the development of host antiviral responses by inhibiting polyadenylation of cellular pre-mRNA. NS1 also promotes the synthesis of viral proteins by stimulating mRNA translation. Here, we show that recombinant NS1 proteins of human pandemic H1N1/2009, avian highly pathogenic H5N1, and low pathogenic H5N2 influenza strains differentially affected these two cellular processes: NS1 of the two avian strains, in contrast to NS1 of H1N1/2009, stimulated translation of reporter mRNA in cell-free translation system; NS1 of H5N1 was an effective inhibitor of cellular pre-mRNA polyadenylation in A549 cells, unlike NS1 of H5N2 and H1N1/2009. We identified key amino acids in NS1 that contribute to its activity in these two basic cellular processes. Thus, we identified strain-specific differences between influenza virus NS1 proteins in pre-mRNA polyadenylation and mRNA translation.  相似文献   

19.
Vascular calcification impairs vessel compliance and increases the risk of cardiovascular events. We found previously that liver X receptor agonists, which regulate intracellular cholesterol homeostasis, augment PKA agonist- or high phosphate-induced osteogenic differentiation of vascular smooth muscle cells. Because cholesterol is an integral component of the matrix vesicles that nucleate calcium mineral, we examined the role of cellular cholesterol metabolism in vascular cell mineralization. The results showed that vascular smooth muscle cells isolated from LDL receptor null (Ldlr(-/-)) mice, which have impaired cholesterol uptake, had lower levels of intracellular cholesterol and less osteogenic differentiation, as indicated by alkaline phosphatase activity and matrix mineralization, compared with WT cells. PKA activation with forskolin acutely induced genes that promote cholesterol uptake (LDL receptor) and biosynthesis (HMG-CoA reductase). In WT cells, inhibition of cholesterol uptake by lipoprotein-deficient serum attenuated forskolin-induced matrix mineralization, which was partially reversed by the addition of cell-permeable cholesterol. Prolonged activation of both uptake and biosynthesis pathways by cotreatment with a liver X receptor agonist further augmented forskolin-induced matrix mineralization. Inhibition of either cholesterol uptake, using Ldlr(-/-) cells, or of cholesterol biosynthesis, using mevastatin-treated WT cells, failed to inhibit matrix mineralization due to up-regulation of the respective compensatory pathway. Inhibition of both pathways simultaneously using mevastatin-treated Ldlr(-/-) cells did inhibit forskolin-induced matrix mineralization. Altogether, the results suggest that up-regulation of cholesterol metabolism is essential for matrix mineralization by vascular cells.  相似文献   

20.
Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms. It is unknown however if the loss of PTEN in Jurkat cells also results in unregulated PDK-1 activity and whether such loss impacts on activation-loop phosphorylation of other putative PDK-1 substrates such as PKC. In this study we have addressed if loss of PTEN in Jurkat T cells affects PDK-1 catalytic activity and intracellular localisation. We demonstrate that reducing the level of 3'-phosphoinositides in Jurkat cells with pharmacological inhibitors of PI3-kinase or expression of PTEN does not affect PDK-1 activity, Ser241 phosphorylation or intracellular localisation. In support of this finding, we show that the levels of PKC activation-loop phosphorylation are unaffected by reductions in the levels of 3'-phosphoinositides. Instead, the dephosphorylation that occurs on PKB/Akt at Thr308 following reductions in 3'-phosphoinositides is dependent on PP2A-like phosphatase activity. Our finding that PDK-1 functions independently of 3'-phosphoinositides in T cells is also confirmed by studies in HuT-78 T cells, a PTEN-expressing cell line with undetectable levels of 3'-phosphoinositides. We conclude therefore that loss of PTEN expression in Jurkat T cells does not impact on the PDK-1/PKC pathway and that only a subset of kinases, such as PKB/Akt, are perturbed as a consequence PTEN loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号