首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A real-time PCR method was developed to detect monodon baculovirus (MBV) in penaeid shrimp. A pair of MBV primers to amplify a 135 bp DNA fragment and a TaqMan probe were developed. The primers and TaqMan probe were specific for MBV and did not cross react with Hepatopancreatic parvovirus (HPV), White spot syndrome virus (WSSV), Infectious hypodermal and haematopoietic virus (IHHNV) and specific pathogen free (SPF) shrimp DNA. A plasmid (pMBV) containing the target MBV sequence was constructed and used for determination of the sensitivity of the real-time PCR. This real-time PCR assay had a detection limit of one plasmid MBV DNA copy. Most significantly, this real-time PCR method can detect MBV positive samples from different geographic locations in the University of Arizona collection, including Thailand and Indonesia collected over a 13-year period.  相似文献   

2.
3.
The prevalence of hepatopancreatic parvovirus (HPV), monodon baculovirus (MBV) and white spot syndrome virus (WSSV) in samples of Penaeus monodon postlarvae (PL10 to PL20, 10 to 20 d old postlarvae) in India was studied by PCR. Samples collected from different hatcheries, and also samples submitted by farmers from different coastal states, were analyzed. HPV was detected in 34%) of the hatchery samples and 31% of the samples submitted by farmers, using a primer set designed for detection of HPV from P. monodon in Thailand. However, none of these samples were positive using primers designed for detection of HPV from P. chinensis in Korea. This indicated that HPV from India was more closely related to HPV from P. monodon in Thailand. MBV was detected in 64% of the samples submitted by the farmers and 71% of the hatchery samples. A total of 84 % of the samples submitted by farmers, and 91% of the hatchery samples, were found positive for WSSV. Prevalence of concurrent infections by HPV, MBV and WSSV was 27% in hatchery samples and 29%, in samples submitted by farmers. Only 8% of the hatchery samples and 16% of the samples submitted by farmers were negative for all 3 viruses. This is the first report on the prevalence of HPV in P. monodon postlarvae from India.  相似文献   

4.
Moribund Penaeus monodon postlarvae (PL8-PL10) in a hatchery in India were found to be simultaneously infected by 3 different viruses. They were highly infected with monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV) by histology and with white spot syndrome virus (WSSV) by non-nested polymerase chain reaction (PCR). Apparently healthy postlarvae tested from the same hatchery were positive for MBV and WSSV by nested PCR only. Tissue sections of such postlarvae did not show any histopathological changes. The simultaneous occurrence of these 3 viruses in hatchery-reared postlarval P. monodon is being reported for the first time.  相似文献   

5.
As one of the major pathogens, hepatopancreatic parvovirus (HPV) can cause severe diseases in penaeid shrimp. We developed a TaqMan-based real-time PCR assay for the HPV detection in China. A pair of primers (HPVF and HPVR) and a TaqMan probe were designed according to the HPV genomic sequence of Chinese isolate (GenBank: GU371276). Our data showed that the primers and TaqMan probe were specific for HPV, and they exhibited no cross-reaction with infectious hypodermal and hematopoietic necrosis virus (IHHNV), white spot syndrome virus (WSSV) and specific pathogen free (SPF) shrimp DNA. The assay had a detection limit of four plasmid HPV DNA copies per reaction. Furthermore, HPV was detected in 16 of 21 Fenneropenaeus Chinensis, 3 of 52 Litopenaeus vannamei and 2 of 2 Marsupenaeus japonicus penaeid shrimp samples. In addition, HPV was also detected in crabs. Therefore, this assay could be successfully used as a sensitive and rapid molecular-based diagnostic method to screen HPV-free animals and survey the prevalence of HPV in cultured populations of penaeid shrimp in China.  相似文献   

6.
In 2001-2002 throughout Thailand, black tiger shrimp Penaeus monodon farmers reported very unusual retarded growth. We have called this problem monodon slow growth syndrome (MSGS). Based on decreased national production, estimated losses due to this phenomenon were in the range of 13 000 million baht (approximately 300 million US dollars) in 2002. Since rearing practices had not changed, it was considered possible that the MSGS problem may have arisen from a new or existing pathogen. To examine this possibility, cultivated shrimp were sampled from 32 commercial rearing ponds that reported abnormally slow growth from eastern, central and southern regions of Thailand. Shrimp were randomly sampled from each pond and grouped into normal and small shrimp. Normal shrimp were defined as those with body weights (BW) of 24 g or more while small shrimp were defined as those that weighed 16.8 g or less. Pleopods were used for detection of monodon baculovirus (MBV), heptopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) using specific polymerase chain reaction (PCR) assays. In addition, some shrimp were processed for normal histopathology and transmission electron microscopy (TEM). Most of the shrimp specimens were infected by at least 1 of these viruses but many had dual or multiple infections. Prevalence of HPV and combined HPV/MBV infections in the small shrimp was significantly higher than in the normal shrimp. In addition to the viruses, a new microsporidian species, gregarines and bacteria were also observed but were not significantly associated with the MSGS problem. Some of the small shrimp gave negative results for all these pathogens by PCR and histology and no new and unique histopathology was recognized in any of the samples. The findings suggested that HPV infection was a contributing factor but not the overriding factor responsible for MSGS. It is possible that MSGS is caused by an unknown pathogen or by some other presently unknown, non-pathogenic factor.  相似文献   

7.
Current methods to detect hepatopancreatic parvovirus (HPV) infection of penaeid shrimp depend on invasive techniques that require dissecting the organs infected by this virus. However, sacrificing valuable stocks in order to determine their HPV status can be a drawback in the case of breeding programs. A method was developed for HPV detection by applying a polymerase chain reaction (PCR) assay to fecal samples collected from live HPV-infected shrimp Penaeus chinensis. A pair of PCR primers, 1120F/1120R, which amplify a 592 base pair (bp) region from the virus genome, was designed from previously known HPV sequence information (HPV clone HPV8). PCR amplification with these primers generated a product of the expected size directly from the crude feces of HPV-infected shrimp but not from the feces of specific pathogen-free (SPF) shrimp. The HPV origin of the amplified product was validated by means of an in situ hybridization assay where the product of the amplification, labeled with digoxigenin (DIG)-11-dUTP, showed an intense reaction within hepatopancreatic cells displaying characteristic HPV lesions on HPV-infected shrimp. No reaction to this probe was observed when reacted in situ with sections of the hepatopancreas of SPF specimens or to sections of shrimp infected by the infectious hypodermal and hematopoietic necrosis virus (IHHNV), another parvovirus of penaeid shrimp. These primers were tested for specificity against homologous and nonhomologous viruses and no product was amplified. A fragment of the expected size was obtained only when purified HPV or purified HPV8 plasmid was used as template DNA. Under optimized conditions, these primers detected as little as 1 fg of purified HPV8 plasmid DNA, equivalent to approximately 300 HPV particles. Analysis of fecal samples by PCR may prove useful for non-lethal screening of valuable shrimp of unknown HPV status. This same strategy also might be used for detection of other enteric viruses that infect penaeid shrimp.  相似文献   

8.
A real-time PCR method using a fluorogenic 5' nuclease assay and a PE Applied Biosystems GeneAmp 5700 sequence detector was developed to detect infectious hypodermal and hematopoietic necrosis virus (IHHNV) in penaeid shrimp. A pair of PCR primers to amplify an 81 bp DNA fragment and a fluorogenic probe (TaqMan probe) were selected from ORF1 (open reading frame 1) of the IHHNV genome. The primers and TaqMan probe used in this assay were shown to be specific for IHHNV and did not react with either hepatopancreatic parvovirus (HPV), white-spot syndrome virus (WSSV), or shrimp DNA. A plasmid, pIHHNV-P4, containing the target IHHNV sequence was constructed and used as a positive control. The concentration of pIHHNV-P4 was determined through spectrophotometric analysis and the plasmid was used for quantitative studies. This real-time PCR assay had a detection limit of 10 copies and a log-linear range up to 5 x 10(7) copies of IHHNV DNA. The assay was then used to quantify IHHNV in infected shrimp collected from 5 locations: Hawaii, Panama, Mexico, Guam, and the Philippines. The quantitative analysis showed that wild-caught, large juvenile Penaeus stylirostris collected from the Gulf of California (Mexico) in 1996 were naturally infected with IHHNV and contained up to 10(9) copies of IHHNV microg(-1) of DNA. Similar quantities of IHHNV were detected in hatchery-raised, small juvenile P. stylirostris collected from Guam in 1995 and in farm-raised, post-larval P. monodon from the Philippines in 1996. Laboratory-infected P. stylirostris contained approximately 10(8) copies of IHHNV 31 d after being fed with IHHNV-infected shrimp tissue. In contrast, individuals of Super Shrimp, a line of P. stylirostris selected for IHHNV resistance, showed no signs of infection 32 d after ingesting IHHNV-infected shrimp tissue. Laboratory-infected P. vannamei also contained approximately 10(8) copies of IHHNV 30 d after being fed infected shrimp tissue. A time-course study of IHHNV replication in juvenile P. vannamei showed that the doubling time in the exponential growth phase was approximately 22 h.  相似文献   

9.
目的:建立一种real-time PCR,快速准确检测肠出血性大肠杆菌O157:H7。方法:以肠出血性大肠杆菌0157:H7 rfbE为待检靶基因,设计一对引物和一条Taqman探针,探针5’端用FAM基团标记,3’端用TAMRA标记。通过重组质粒的构建,建立并优化了大肠杆菌0157:H7的荧光定量PCR检测方法。结果:在人工污染样本无需富集的情况下,检测的最低DNA浓度是10拷贝/反应(3CFU/mL);特异性检测实验中,0157菌株检测结果均为rfbE阳性,而非0157:H7菌株检测结果均为阴性;重复性实验中,批内、批间变异系数均小于3%。结论:实验结果显示此荧光定量PCR方法特异性、灵敏度高,重复性好,可对分离的可疑大肠杆菌0157:H7菌株进行快速鉴定。  相似文献   

10.
A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples.  相似文献   

11.
A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples.  相似文献   

12.
Molecular detection methods were developed to aid in the diagnosis of a rickettsia-like bacterium (RLB) which caused severe mortalities of farm-raised Penaeus monodon in Madagascar. Using primers derived from the 16S rRNA gene of bacteria, a PCR assay was optimized to amplify this region of the genome of the RLB, using extracted DNA from infected P. monodon tissue as the template. The resulting amplified PCR product was sequenced and 2 novel primers were selected from the variable region of the gene. These primers amplified a 532 bp fragment of DNA originating from the rickettsia-infected samples. The PCR assay was optimized and tested on DNA extracted from specific pathogen-free (SPF) P. vannamei tissue and several other strains of bacteria. The PCR assay with the rickettsia-specific primers was specific for this RLB and did not amplify the other DNA samples tested. The 532 bp PCR-amplified fragment was labeled with digoxigenin (DIG) for in situ hybridization assays. This probe was tested on SPF, RLB and bacteria-infected shrimp specimens preserved in Davidson's fixative. The probe was specific for both natural and experimental rickettsial infections. Hybridization with this probe required a stringent temperature of 65 degrees C, otherwise cross-reactivity was observed with other types of bacteria.  相似文献   

13.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

14.
The prevalence of hepatopancreatic parvovirus (HPV) in wild penaeid shrimp samples from India was studied by nested polymerase chain reaction (PCR) using primers designed in our laboratory. The virus could be detected in 9 out of 119 samples by non-nested PCR. However, by nested PCR 69 out of 119 samples were positive. The PCR results were confirmed by hybridization with digoxigenin-labelled DNA probe. Shrimp species positive by non-nested PCR included Penaeus monodon, Penaeus indicus and Penaeus semisulcatus and by nested PCR Parapenaeopsis stylifera, Penaeus japonicus, Metapenaeus monoceros, M. affinis, M. elegans, M. dobsoni, M. ensis and Solenocera choprai. This is the first report on the prevalence of HPV in captured wild shrimp from India.  相似文献   

15.
Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand   总被引:18,自引:0,他引:18  
There are five different viruses which are currently being studied for their impact on commercial farming of the black tiger prawn (Penaeus monodon) in Thailand. Some of these viruses cause disease in other penaeid shrimp species and even other crustacean species. Some occur not only in cultivated shrimp in other Asian countries, but also in those from Australia and the western hemisphere. In descending order from greatest to least economic impact on the Thai shrimp industry, the five viruses are: white-spot baculovirus, yellow-head virus, hepatopancreatic parvo-like virus, infectious hypodermal and hematopoeitic necrosis virus and monodon baculovirus. The purpose of this review is to summarize recent work on these viruses and to suggest future directions of research that may be useful in the effort to develop a sustainable shrimp industry.  相似文献   

16.
Hepatopancreatic parvovirus (HPV) was isolated from the hepatopancreas (HP) of slow growth Penaeus monodon by urografin gradient centrifugation. The presence of HPV in the fraction was monitored by PCR and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Only 1 major 54 kDa protein band was observed in the strong PCR-positive fractions used to immunize mice for monoclonal antibody production. After cell fusion, the first step in selecting specific antibodies was performed by dot-blot assay with purified HPV viral particles. The second screening step was carried out using Western blots of purified HPV proteins and immunohistochemistry of HPV-infected HP tissue. Four monoclonal antibodies were isolated; these bound to the 54 kDa protein in Western blots and to intranuclear inclusion bodies in tubule epithelial cells of HPV-infected prawn tissue by immunohistochemistry. None of the antibodies showed cross-reactivity either to uninfected shrimp tissue or to other shrimp viruses tested. These reagents have potential for use in developing a highly sensitive immunoassay such as sandwich ELISA or a convenient kit for detection of HPV infection.  相似文献   

17.
We developed a PCR assay that can detect infectious hypodermal and hematopoietic necrosis virus (IHHNV) but that does not react with IHHNV-related sequences in the genome of Penaeus monodon from Africa and Australia. IHHNV is a single-stranded DNA virus that has caused severe mortality and stunted growth in penaeid shrimp. Recently, IHHNV-related sequences were found in the genome of some stocks of P. monodon from Africa and Australia. These virus-related sequences have a high degree of similarity (86 and 92% identities in nucleotide sequence) to the viral genome, which has often generated false-positive reactions during PCR screening of these stocks. For this assay, a pair of IHHNV primers (IHHNV309F/R) was selected. The sequences of these primers match (100% of nucleotides) the target sequence in IHHNV, but mismatch 9 or 12 nucleotides of the genomic IHHNV-related sequences. This PCR assay was tested with various IHHNV isolates and with a number of samples of shrimp DNA that contained IHHNV-related sequences. This assay can reliably distinguish IHHNV DNA from shrimp DNA: it only detects IHHNV. Also, this pair of primers was included in a duplex PCR to detect IHHNV and simultaneously determine the presence of an IHHNV-related sequence. Using these primers, the PCR assay has a sensitivity equivalent to a PCR assay commonly used for detecting IHHNV in Litopenaeus vannamei, and can be used for routine detection.  相似文献   

18.
The black tiger prawn Penaeus monodon is a valuable aquaculture product in Taiwan. Two specific diagnostic methods were established for P. monodon-type baculovirus, one using polymerase chain reaction (PCR) technology and the other enzyme-linked immunosorbent assay (ELISA) technology. Monodon-type baculovirus (MBV) was purified by sucrose gradient centrifugation from occlusion bodies of MBV-infected postlarvae of P. monodon. MBV DNA was subsequently purified from the occlusion bodies and its presence was confirmed by PCR using primers of the polyhedrin gene. Based on conserved sequences of the DNA polymerase genes of Autographa californica nuclear polyhedrosis virus (AcMNPV) and Lymantria dispar nuclear polyhedrosis virus (LdMNPV), primers were designed and synthesized to yield a 714 bp PCR fragment from MBV. However, the sequence of this fragment revealed low homology with that of LdMNPV and AcMNPV. From the DNA sequence of this fragment, a second set of primers was designed, and using these primers, a 511 bp DNA fragment was amplified only when MBV DNA was the template. DNA templates from AcMNPV, white spot syndrome diseased shrimp, or PMO cells (a cell line derived from the Oka organ of Penaeus monodon) did not give any amplified DNA fragment. Therefore, this primer pair was specific for the diagnosis of MBV. By using intraspleenic immunization of rabbits with purified MBV occlusion bodies, a polyclonal rabbit antiserum against MBV was obtained. This antiserum could detect nanogram levels of MBV, but did not cross react with white spot syndrome virus (WSSV), homogenates of PMO cells, postlarvae, hepatopancreatic tissue or intestinal tissue of black tiger prawns by competitive ELISA. This sensitive method could detect MBV even in tissue homogenates.  相似文献   

19.
Hepatopancreatic parvovirus (HPV) infects the hepatopancreas in penaeid shrimp and retards their growth. The DNA sequence of HPV from Thai shrimp Penaeus monodon (HPVmon) differs from HPV of Penaeus chinensis (HPVchin) by approximately 30%. In spite of this difference, commercial PCR primers (DiagXotics) developed from HPVchin to yield a 350 bp PCR product do give a 732 bp product with HPVmon DNA template. On the other hand, the sensitivity of HPVmon detection with these primers and with hybridization probes designed for HPVchin is significantly lower than it is with HPVchin. To improve sensitivity for HPVmon detection, we used the sequence of the 732 bp HPVmon PCR amplicon described above to develop specific PCR primers (H441F and H441R) and hybridization probe. The primers could detect as little as 1 fg of purified HPVmon DNA while the 441 bp digoxygenin-labeled PCR product gave strong, specific reactions with in situ hybridization and with hybridization blots. In contrast, negative results were obtained using DNA from all other pathogens tested and from DNA of P. monodon. Supernatant solution from boiled, fresh shrimp fecal and postlarval samples homogenized in 0.025% NaOH/0.0125% SDS could be used to detect as little as 0.1 pg HPVmon DNA by the PCR reaction. By dot blot hybridization, a visible signal was obtained with purified HPVmon DNA at 0.01 pg, but detection in spiked feces and postlarval samples was only 1 and 0.1 pg, respectively.  相似文献   

20.
WSSV和IHHNV二重实时荧光PCR检测方法的建立   总被引:6,自引:2,他引:4  
根据基因库中对虾白斑综合征病毒WSSV(AF369029)和传染性皮下及造血器官坏死病毒IHHNV(AF218226)基因序列,设计了WSSV和IHHNV的两对特异性引物和两条用不同荧光基团标记的TaqMan探针。对反应条件和试剂浓度进行优化,建立了能够同时检测WSSV和IHHNV的二重实时荧光PCR方法。该方法特异性好,对WSSV和IHHNV的检测敏感性分别达到2和20个模板拷贝数;此外抗干扰能力强,对WSSV和IHHNV不同模板浓度进行组合,仍可有效地同时检测这二个病毒。对保存的30份经常规PCR检测仅为WSSV或IHHNV阳性的样品进行二重实时荧光PCR检测,结果都为阳性,其中1份为WSSV和IHHNV混合感染。本研究建立的二重实时荧光PCR方法用于WSSV和IHHNV的检测具有特异、敏感、快速、定量等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号