共查询到20条相似文献,搜索用时 203 毫秒
1.
Jun Liu Guanzheng Luo Juan Sun Lili Men Honggang Ye Chuan He Decheng Ren 《生物化学与生物物理学报:疾病的分子基础》2019,1865(9):2138-2148
Defects in the development, maintenance or expansion of β-cell mass can result in impaired glucose metabolism and diabetes. N6-methyladenosine affects mRNA stability and translation efficiency, and impacts cell differentiation and stress response. To determine if there is a role for m6A in β-cells, we investigated the effect of Mettl14, a key component of the m6A methyltransferase complex, on β-cell survival and function using rat insulin-2 promoter-Cre-mediated deletion of Mettl14 mouse line (βKO). We found that βKO mice with normal chow exhibited glucose intolerance, lower levels of glucose-stimulated insulin secretion, increased β-cell death and decreased β-cell mass. In addition, HFD-fed βKO mice developed glucose intolerance, decreased β-cell mass and proliferation, exhibited lower body weight, increased adipose tissue mass, and enhanced insulin sensitivity due to enhanced AKT signaling and decreased gluconeogenesis in the liver. HFD-fed βKO mice also showed a decrease in de novo lipogenesis, and an increase in lipolysis in the liver. RNA sequencing in islets revealed that Mettl14 deficiency in β-cells altered mRNA expression levels of some genes related to cell death and inflammation. Together, we showed that Mettl14 in β-cells plays a key role in β-cell survival, insulin secretion and glucose homeostasis. 相似文献
2.
3.
The pancreatic β-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release 总被引:4,自引:0,他引:4 下载免费PDF全文
Bo Hellman Lars-?ke Idahl ?ke Lernmark Janove Sehlin Inge-Bert T?ljedal 《The Biochemical journal》1974,138(1):33-45
The transport and oxidation of glucose, the content of fructose 1,6-diphosphate, and the release of insulin were studied in microdissected pancreatic islets of ob/ob mice incubated in Krebs-Ringer bicarbonate medium. Under control conditions glucose oxidation and insulin release showed a similar dependence on glucose concentration with the steepest slope in the range 5-12mm. The omission of Ca(2+), or the substitution of choline ions for Na(+), or the addition of diazoxide had little if any effect on glucose transport. However, Ca(2+) or Na(+) deficiency as well as diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine 1,1-dioxide) or ouabain partially inhibited glucose oxidation. These alterations of medium composition also increased the islet content of fructose 1,6-diphosphate, as did the addition of adrenaline. Phentolamine [2-N-(3-hydroxyphenyl)-p-toluidinomethyl-2-imidazoline] counteracted the effects of adrenaline and Ca(2+) deficiency on islet fructose 1,6-diphosphate. After equilibration in Na(+)-deficient medium, the islets exhibited an increase in basal insulin release whereas the secretory response to glucose was inhibited. The inhibitory effects of Na(+) deficiency on the secretory responses to different concentrations of glucose correlated with those on (14)CO(2) production. When islets were incubated with 17mm-glucose, the sudden replacement of Na(+) by choline ions resulted in a marked but transient stimulation of insulin release that was not accompanied by a demonstrable increase of glucose oxidation. Galactose and 3-O-methylglucose had no effect on glucose oxidation or on insulin release. The results are consistent with a metabolic model of the beta-cell recognition of glucose as insulin secretagogue and with the assumption that Ca(2+) or Na(+) deficiency, or the addition of adrenaline or diazoxide, inhibit insulin release at some step distal to stimulus recognition. In addition the results suggest that these conditions create a partial metabolic block of glycolysis in the beta-cells. Hence the interrelationship between the processes of stimulus recognition and insulin discharge may involve a positive feedback of secretion on glucose metabolism. 相似文献
4.
Kazuya Yamagata Takafumi Senokuchi Meihong Lu Makoto Takemoto Md. Fazlul Karim Chisa Go Yoshifumi Sato Mitsutoki Hatta Tatsuya Yoshizawa Eiichi Araki Junichi Miyazaki Wen-Jie Song 《Biochemical and biophysical research communications》2011,407(3):620
KCNQ1, located on 11p15.5, encodes a voltage-gated K+ channel with six transmembrane regions, and loss-of-function mutations in the KCNQ1 gene cause hereditary long QT syndrome. Recent genetic studies have identified that single nucleotide polymorphisms located in intron 15 of the KCNQ1 gene are strongly associated with type 2 diabetes and impaired insulin secretion. In order to understand the role of KCNQ1 in insulin secretion, we introduced KCNQ1 into the MIN6 mouse β-cell line using a retrovirus-mediated gene transfer system. In KCNQ1 transferred MIN6 cells, both the density of the KCNQ1 current and the density of the total K+ current were significantly increased. In addition, insulin secretion by glucose, pyruvate, or tolbutamide was significantly impaired by KCNQ1-overexpressing MIN6 cells. These results suggest that increased KCNQ1 protein expression limits insulin secretion from pancreatic β-cells by regulating the potassium channel current. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1343-1347
Diabetes results from an absolute or relative deficiency in functional pancreatic β-cell mass. Over the past few years, there has been renewed interest in the role of insulin itself in the regulation of β-cell fate. Numerous animal models point to a critical role for β-cell insulin signaling in the survival and proliferation of pancreatic β-cells. In the present article, we review new studies that elucidate the mechanism by which insulin exerts anti-apoptotic and pro-mitogenic effects on β-cells. In particular, we highlight the emerging role for Raf-1 kinase in autocrine insulin signaling and β-cell fate decisions. We also discuss provocative evidence that the relationship between the dose of insulin and the birth and death of β-cells is not linear. We propose a new hypothesis based on these findings, called the ‘sweet spot’ hypothesis, that can explain how both upward and downward deviations from normal levels of autocrine/paracrine insulin signaling might play an important role in the pathogenesis of type 1 diabetes and type 2 diabetes. We also highlight the key experiments that are required to further test this hypothesis. 相似文献
6.
Erik Gylfe 《The Biochemical journal》1978,174(3):959-964
High concentrations of glucose have a protective effect on the glucoreceptor mechanism for insulin secretion during culture of pancreatic islets in chemically defined media. To study at what level glucose exerts this effect, insulin secretion from beta-cell-rich mouse pancreatic islets was measured before and after culture for 1 week in the presence of different substances. Before culture, glucose and inosine were potent stimulators, mannose and fructose were less potent and xylitol had no effect on secretion. Culture in 3mm-glucose resulted in a 10-fold decrease in the insulin response to glucose stimulation. A less marked decrease was noted after culture in 20mm- or 30mm-glucose. Inosine-stimulated secretion was much decreased after culture in high concentrations of glucose, whereas the responses to mannose or fructose were unchanged. After culture in 30mm-mannose, glucose-stimulated secretion was similar to that observed after culture in high concentrations of glucose, whereas the response to mannose had much decreased. There were no secretory responses to glucose or fructose after culture in 30mm-fructose, or to glucose or xylitol after culture in 30mm-xylitol. Culture in 10mm-inosine did not preserve any significant response to glucose or inosine. The insulin contents of islets and culture media were higher after culture in high concentrations of glucose, mannose or inosine than after culture in fructose, xylitol or low concentrations of glucose. It is suggested that glucose, and to some extent mannose, preserves the glucoreceptor mechanism for insulin secretion by influencing an early stage in glucose metabolism, presumably glucokinase activity. 相似文献
7.
Yamagata K Senokuchi T Lu M Takemoto M Fazlul Karim M Go C Sato Y Hatta M Yoshizawa T Araki E Miyazaki J Song WJ 《Biochemical and biophysical research communications》2011,(3):620-625
Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases. 相似文献
8.
Ana Cláudia Munhoz Julian D. C. Serna Eloisa Aparecida Vilas-Boas Camille C. Caldeira da Silva Tiago G. Santos Francielle C. Mosele Sergio L. Felisbino Vilma Regina Martins Alicia J. Kowaltowski 《Aging cell》2023,22(6):e13827
Obesity significantly decreases life expectancy and increases the incidence of age-related dysfunctions, including β-cell dysregulation leading to inadequate insulin secretion. Here, we show that diluted plasma from obese human donors acutely impairs β-cell integrity and insulin secretion relative to plasma from lean subjects. Similar results were observed with diluted sera from obese rats fed ad libitum, when compared to sera from lean, calorically restricted, animals. The damaging effects of obese circulating factors on β-cells occurs in the absence of nutrient overload, and mechanistically involves mitochondrial dysfunction, limiting glucose-supported oxidative phosphorylation and ATP production. We demonstrate that increased levels of adiponectin, as found in lean plasma, are the protective characteristic preserving β-cell function; indeed, sera from adiponectin knockout mice limits β-cell metabolic fluxes relative to controls. Furthermore, oxidative phosphorylation and glucose-sensitive insulin secretion, which are completely abrogated in the absence of this hormone, are restored by the presence of adiponectin alone, surprisingly even in the absence of other serological components, for both the insulin-secreting INS1 cell line and primary islets. The addition of adiponectin to cells treated with plasma from obese donors completely restored β-cell functional integrity, indicating the lack of this hormone was causative of the dysfunction. Overall, our results demonstrate that low circulating adiponectin is a key damaging element for β-cells, and suggest strong therapeutic potential for the modulation of the adiponectin signaling pathway in the prevention of age-related β-cell dysfunction. 相似文献
9.
10.
《遗传学报》2022,49(3):208-216
Decreased functional β-cell mass is the hallmark of diabetes, but the cause of this metabolic defect remains elusive. Here, we show that the levels of the growth factor receptor-bound protein 10 (GRB10), a negative regulator of insulin and mTORC1 signaling, are markedly induced in islets of diabetic mice and high glucose-treated insulinoma cell line INS-1 cells. β-cell-specific knockout of Grb10 in mice increased β-cell mass and improved β-cell function. Grb10-deficient β-cells exhibit enhanced mTORC1 signaling and reduced β-cell dedifferentiation, which could be blocked by rapamycin. On the contrary, Grb10 overexpression induced β-cell dedifferentiation in MIN6 cells. Our study identifies GRB10 as a critical regulator of β-cell dedifferentiation and β-cell mass, which exerts its effect by inhibiting mTORC1 signaling. 相似文献
11.
Herzberg-Schäfer SA Staiger H Heni M Ketterer C Guthoff M Kantartzis K Machicao F Stefan N Häring HU Fritsche A 《PloS one》2010,5(12):e14194
Background
To date, fasting state- and different oral glucose tolerance test (OGTT)-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced) fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction.Methodology/Principal Findings
A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs) known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05). The indices were ranked according to their associations'' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset) were summed up resulting in a final ranking. This approach revealed area under the curve (AUC)Insulin(0-30)/AUCGlucose(0-30) as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUCInsulin(0-30)/AUCGlucose(0-30), corrected insulin response (CIR), AUCC-Peptide(0-30)/AUCGlucose(0-30), AUCC-Peptide(0-120)/AUCGlucose(0-120), two different formulas for the incremental insulin response from 0–30 min, i.e., the insulinogenic indices (IGI)2 and IGI1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05). AUCC-Peptide(0-120)/AUCGlucose(0-120) was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last.Conclusions/Significance
With AUCInsulin(0-30)/AUCGlucose(0-30), CIR, AUCC-Peptide(0-30)/AUCGlucose(0-30), AUCC-Peptide(0-120)/AUCGlucose(0-120), IGI2, IGI1, and insulin 30 min, dynamic measures of insulin secretion based on early insulin and C-peptide responses to oral glucose represent measures which are more appropriate to assess genetically determined β-cell dysfunction than fasting measures, i.e., HOMA-B. Genes predominantly influencing the incretin axis may possibly be best detected by AUCC-Peptide(0-120)/AUCGlucose(0-120). 相似文献12.
Dominik P. Waluk Katarina Vielfort Sepide Derakhshan Helena Aro Mary C. Hunt 《Biochemical and biophysical research communications》2013,430(1):54-59
Pancreatic β-cells secrete insulin in response to various stimuli to control blood glucose levels. This insulin release is the result of a complex interplay between signaling, membrane potential and intracellular calcium levels. Various nutritional and hormonal factors are involved in regulating this process. N-Acyl taurines are a group of fatty acids which are amidated (or conjugated) to taurine and little is known about their physiological functions. In this study, treatment of pancreatic β-cell lines (HIT-T15) and rat islet cell lines (INS-1) with N-acyl taurines (N-arachidonoyl taurine and N-oleoyl taurine), induced a high frequency of calcium oscillations in these cells. Treatment with N-arachidonoyl taurine and N-oleoyl taurine also resulted in a significant increase in insulin secretion from pancreatic β-cell lines as determined by insulin release assay and immunofluorescence (p < 0.05). Our data also show that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in insulin secretion in response to N-arachidonoyl taurine and N-oleoyl taurine treatment. However our data also suggest that receptors other than TRPV1 are involved in the insulin secretion response to treatment with N-oleoyl taurine. 相似文献
13.
14.
Latrunculin depolymerizes and jasplakinolide polymerizes β-cell actin microfilaments. Both increase insulin secretion when Ca(2+) enters β-cells during depolarization by glucose, sulfonylureas or potassium. Mouse islets were held hyperpolarized with diazoxide, and stimulated with acetylcholine to test the role of microfilaments in insulin secretion triggered by intracellular Ca(2+) mobilization and store-operated Ca(2+) entry (SOCE). Jasplakinolide slightly attenuated Ca(2+) mobilization and did not affect SOCE, but consistently inhibited the attending insulin secretion. Latrunculin did not affect Ca(2+) changes induced by acetylcholine, but consistently increased insulin secretion, its effect being larger in response to Ca(2+) entry than to Ca(2+) mobilization. Microfilaments have thus a distinct impact on exocytosis of insulin granules depending on the source of triggering Ca(2+). 相似文献
15.
PINK1 deficiency in β-cells increases basal insulin secretion and improves glucose tolerance in mice
Emma Deas Kaisa Piipari Asif Machhada Abi Li Ana Gutierrez-del-Arroyo Dominic J. Withers Nicholas W. Wood Andrey Y. Abramov 《Open biology》2014,4(5)
The Parkinson''s disease (PD) gene, PARK6, encodes the PTEN-induced putative kinase 1 (PINK1) mitochondrial kinase, which provides protection against oxidative stress-induced apoptosis. Given the link between glucose metabolism, mitochondrial function and insulin secretion in β-cells, and the reported association of PD with type 2 diabetes, we investigated the response of PINK1-deficient β-cells to glucose stimuli to determine whether loss of PINK1 affected their function. We find that loss of PINK1 significantly impairs the ability of mouse pancreatic β-cells (MIN6 cells) and primary intact islets to take up glucose. This was accompanied by higher basal levels of intracellular calcium leading to increased basal levels of insulin secretion under low glucose conditions. Finally, we investigated the effect of PINK1 deficiency in vivo and find that PINK1 knockout mice have improved glucose tolerance. For the first time, these combined results demonstrate that loss of PINK1 function appears to disrupt glucose-sensing leading to enhanced insulin release, which is uncoupled from glucose uptake, and suggest a key role for PINK1 in β-cell function. 相似文献
16.
17.
《Biochemical and biophysical research communications》2020,521(1):178-183
The emergence of bihormonal (BH) cells expressing insulin and glucagon has been reported under diabetic conditions in humans and mice. Whereas lineage tracing studies demonstrated that glucagon-producing α cells can be reprogrammed into BH cells, the underlying dynamics of the conversion process remain poorly understood. In the present study, we investigated the identities of pancreatic endocrine cells by genetic lineage tracing under diabetic conditions. When β-cell ablation was induced by alloxan (ALX), a time-dependent increase in BH cells was subsequently observed. Lineage tracing experiments demonstrated that BH cells originate from α cells, but not from β cells, in ALX-induced diabetic mice. Notably, supplemental insulin administration into diabetic mice resulted in a significant increase in α-cell-derived insulin-producing cells that did not express glucagon. Furthermore, lineage tracing in Ins2Akita diabetic mice demonstrated a significant induction of α-to-β conversion. Thus, adult α cells have plasticity, which enables them to be reprogrammed into insulin-producing cells under diabetic conditions, and this can be modulated by supplemental insulin administration. 相似文献
18.
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays a crucial role in the endocrine system. The present study aimed to investigate the effect of PACAP38 on insulin secretion and the underlying mechanism in rat pancreatic β-cells. The insulin secretion results showed that PACAP38 stimulated insulin secretion in a glucose- and dose-dependent manner. The insulinotropic effect was mediated by PAC1 receptor, but not by VPAC1 and VPAC2 receptors. Inhibition of adenylyl cyclase and protein kinase A suppressed PACAP38-augmented insulin secretion. Glucose-regulated insulin secretion is dependent on a series of electrophysiological activities. Current-clamp technology suggested that PACAP38 prolonged action potential duration. Voltage-clamp recordings revealed that PACAP38 blocked voltage-dependent potassium currents, and this effect was reversed by inhibition of PAC1 receptor, adenylyl cyclase, or protein kinase A. Activation of Ca2+ channels by PACAP38 was also observed, which could be antagonized by the PAC1 receptor antagonist. In addition, calcium-imaging analysis indicated that PACAP38 increased intracellular Ca2+ concentration, which was decreased by PAC1 receptor antagonist. These findings demonstrate that PACAP38 stimulates glucose-induced insulin secretion mainly by acting on PAC1 receptor, inhibiting voltage-dependent potassium channels, activating Ca2+ channels and increasing intracellular Ca2+ concentration. Further, PACAP blocks voltage-dependent potassium currents via the adenylyl cyclase/protein kinase A signaling pathway. 相似文献
19.
《Cytokine》2014,65(2):159-166
IntroductionOur previous study revealed that plasma visfatin levels were lower in pregnant women with gestational diabetes (GDM) than non-GDM independent of prepreganacy BMI. We examined whether central visfatin modulates energy and glucose homeostasis via altering insulin resistance, insulin secretion or islet morphometry in diabetic rats.MethodsPartial pancreatectomized, type 2 diabetic, rats were interacerbroventricularly infused with visfatin (100 ng/rat/day, Px-VIS), visfatin + visfatin antagonist, CHS-828 (100 μg/rat/day, Px-VIS-ANT), or saline (control, Px-Saline) via osmotic pump, respectively, for 4 weeks.ResultsCentral visfatin improved insulin signaling (pAkt → pFOXO-1) but not pSTAT3 in the hypothalamus. Central visfatin did not alter serum visfatin levels in diabetic rats whereas the levels were higher in non-diabetic rats than diabetic rats. Body weight at the 2nd week was lowered in the Px-VIS group due to decreased food intake in the first two weeks compared to the Px-Saline group and energy expenditure was not significantly different among the treatment groups of diabetic rats. Visfatin antagonist treatment nullified the central visfatin effect. Px-VIS increased whole body glucose disposal rates in euglycemic hyperinsulinemic clamp compared to Px-Saline and lowered hepatic glucose output, whereas Px-VIS-ANT blocked the visfatin effect on insulin resistance (P < 0.05). In hyperglycemic clamp study, the area under the curve of insulin in first and second phase were significantly higher in the Px-VIS group than the Px-Saline group without modifying insulin sensitivity at the hyperglycemic state, whereas the increase in serum insulin levels was blocked in the Px-VIS-ANT group. Central visfatin also increased β-cell mass by increasing β-cell proliferation.ConclusionsCentral visfatin improved glucose homeostasis by increasing insulin secretion and insulin sensitivity at euglycemia through the hypothalamus in diabetic rats. Therefore, visfatin is a positive modulator of glucose homeostasis by delivering the hypothalamic signals into the peripheries. 相似文献
20.
Recent studies have revealed that beta-cell dysfunction is an important factor in developing type 2 diabetes. beta-cell dysfunction is related to impairment of the insulin/IGF-1 signaling cascade through insulin receptor substrate-2 (IRS2). The induction of IRS2 in beta-cells plays an important role in potentiating beta-cell function and mass. In this study, we investigated whether herbs used for treating diabetes in Chinese medicine-Galla rhois, Rehmanniae radix, Machilus bark, Ginseng radix, Polygonatum radix, and Scutellariae radix-improved IRS2 induction in rat islets, glucose-stimulated insulin secretion and beta-cell survival. R. radix, Ginseng radix and S. radix significantly enhanced glucose-stimulated insulin secretion compared to the control, i.e., by 49, 67 and 58%, respectively. These herbs induced the expression of IRS2, pancreas duodenum homeobox-1 (PDX-1), and glucokinase. The increased level of glucokinase could explain the enhancement of glucose-stimulated insulin secretion with these extracts. Increased PDX-1 expression was associated with beta-cell proliferation, which was consistent with the cell viability assay. In conclusion, R. radix, Ginseng radix and S. radix had an insulinotropic action similar to that of exendin-4. 相似文献