首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广东沿海几种赤潮生物的分类学研究   总被引:23,自引:0,他引:23  
对1997年秋 ̄1998年春广东沿海多次赤潮发生期间的几种优势赤潮藻类进行了形态学和分类学研究。1种为我国首次报道引发赤潮的定革命金藻类(Prymnesiophytes)-球状棕囊藻(Phaeocystis cf.gliobosa)。另有甲藻类7种,其中裸甲藻目(Gymnodiniales)3种:米氏裸甲藻(Gymnodinium cf.mikimotoi)、环节环沟藻(Gyrodinium in  相似文献   

2.
A fine-structural survey of three species of Prorocentrum and five species of Exuviaella has shown that there is no basic distinction between the two genera. An earlier proposal that the genus Exuviaella be abandoned and its species incorporated into Prorocentrum is supported by this work. The basic fine structure of the species studied is typical of the dinoflagellates but there are adequate distinctive features to justify the retention of the separate order Prorocentrales. Within the order some ultrastructural differences noted between species are types of pyrenoid, ornamentation and structure of the thecal plates and presence or absence of trichocysts and fibrillar bodies.  相似文献   

3.
The present study is a report of data of planktonic dinoflagellates which includes a list of 252 species, with 10 985 entries in the southern Gulf of Mexico along with information concerning their occurrence. Material for the present study consists of water and net samples obtained during 11 cruises collected at 608 sites between June 1979 and December 2002. Ceratium (47 spp.), Protoperidinium (28 spp.), Dinophysis (26 spp.), Oxytoxum (19 spp.) and Prorocentrum (15 spp.) were the most diverse genera. The most common species found are Ceratium breve, Ceratium contortum, Ceratium furca, Ceratium furca var. eugranum, Ceratium fusus. Ceratium fusus var. seta, Ceratium kofoidii, Ceratium macroceros, Ceratium massiliense, Ceratium pentagonum, Ceratium teres, Ceratium trichoceros, Ceratium tripos, Dinophysis caudata, Ornithocercus magnificus, Podolampas palmipes, Prorocentrum com‐pressum, Prorocentrum gracile, Prorocentrum micans, Protoperidinium divergens and Pyrophacus steinii. Thirteen species are potential toxin producers, among which Karenia brevis was responsible for fish mass mortalities. Other toxic species such as Amphidinium carterae, Dinophysis acuta, Dinophysis caudata, Dinophysis fortii, Dinophysis mitra, Dinophysis rotundata, Dinophysis tripos, Prorocentrum mexicanum, Prorocentrum micans and Prorocentrum minimum were present mostly in net samples. The non‐toxic species Ceratium furca, Pyrodinium bahamense var. bahamense, Scripp‐siella trochoidea and Gonyaulax polygram ma were found in blooms during the summer. Qualitative data show that dinoflagellates occurred mostly during July and August, associated with hydrographic conditions. A checklist of the species and their occurrence are given.  相似文献   

4.
Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates.  相似文献   

5.
Dinophytes acquired chloroplasts obviously early in evolution and later lost them multiple times. Most families and genera contain both photosynthetic and heterotrophic species. Chloroplasts enveloped by three membranes with thylakoids in stacks of three, containing peridinin as the main pigment, are regarded as the original dinophyte plastids. Pyrenoids are generally present. Stigmata, if present, are usually parts of the chloroplast or are modified original plastids. The form II type RUBISCO found in the dinophytes is unique for eukaryotes, otherwise known only in some anaerobic bacteria. It is disputed whether the original dinophyte chloroplasts are derived from a prokaryotic or an eukaryotic endosymbiosis. Various dinoflagellates contain aberrant chloroplasts. Glenodinium foliaceum and Peridinium balticum have a single complete endosymbiont, originally a pcnnate diatom. Podolampas bipes houses several dictyophycean symbiont cells. The “symbionts” of Lepidodiniurn viride and Gymnodinium chlorophorum are highly reduced prasinophyte cells. The chloroplasts of Gymnodinium mikimotoi have aberrant pigments (fucoxanthin derivatives, no peridinin) and fine structure. The dinoflagellate hosts do not seem to contain any parts of the former endosymbiont except the chloroplasts. Photosynthetic Dinophysis species have cryptophycean-like chloroplasts, whereas symbiotic cyanobacteria are found in other members of the Dinophysiales, e.g., Ornithocercus. Various dinophytes, e.g. Gymnodinium aeruginosum, use kleptochloroplasts from ingested cryptophytes transiently for photosynthesis. Original or secondarily acquired chloroplasts can only be used for phylogenetic considerations in exceptionally cases: it seems unlikely that the Prorocentrales have evolved from the Dinophysiales because all Prorocentrales possess original dinoflagellate chloroplasts, whereas no member of the Dinophysiales has such chloroplasts.  相似文献   

6.
Photosynthetic dinoflagellates possess a great diversity of plastids that have been acquired through successful serial endosymbiosis. The peridinin-containing plastid in dinoflagellates is canonical, but many other types are known within this group. Within the Dinophysiales, several species of Dinophysis contain plastids, derived from cryptophytes or haptophytes. In this work, the presence of numerous intracellular cyanobacteria-like microorganisms compartmentalized by a separate membrane is reported for the first time within the benthic dinophysoid dinoflagellate Sinophysis canaliculata Quod et al., a species from a genus morphologically close to Dinophysis. Although the contribution of these cyanobacterial endosymbionts to S. canaliculata is still unknown, this finding suggests a possible undergoing primary endosymbiosis in a dinoflagellate.  相似文献   

7.
Abstract

A survey of planktonic dinoflagellates and related cysts was carried out in the Gulf of Trieste throughout one year from April 1992 to March 1993. 113 taxa were recovered by the analysis of phytoplankton net samples. The most represented genera were Protoperidinium (34 species), Ceratium (24 species), Dinophysis (15 species), Gonyaulax (11 species) and Prorocentrum (8 species). A particular attention was given to potentially toxic species belonging to the genera Dinophysis, Alexandrium and Prorocentrum. The highest number of species (67 species) was recorded in July, and the lowest one (18 species) in February.

33 cyst morphotypes were recorded by the analysis of sediment samples. The most represented genera were Protoperidinium (8 morphotypes), Scrippsiella (3 morphotypes), Gonyaulax (3 morphotypes) and Alexandrium (2 morphotypes); the cysts most frequently found were those of Conyaulax polyedra and Alexandrium pseudogonyaulax.  相似文献   

8.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

9.
SEM studies of Nannoceratopsis gracilis Alberti reveal details of ridge and groove arrangement in the subapical region. Transversal and longitudinal furrows can be compared with the furrow system in Dinophysis and other Dinophysiales. A median sagittal 'groove' observed in corroded specimens is possibly derived from a sagittal suture as found in the thecae of these groups. It is, however, still impossible to assign Nannoceratopsis to any living genus. Although preformed archaeopyles have not been observed, surface and ridge structures leave little doubt that we are dealing with cysts, similar in this respect to the proximate cysts of the Peridiniales.
Neue Untersuchungen an Nannoceratopsis gracilis Alberti im Elektronen-Raster-Mikroskop gaben Aufschluβüber die Anordnung von Leisten und Rinnen im subapikalen Bereich und erlauben die Rekonstruktion des Quer- und Längsfur-chensystems. Dadurch werden genauere Vergleiche mit den Furchenverhältnissen bei Dinophysis und anderen Dinophysiales möglich. Zusätzliche Indizien geben mediane sagittale 'Rinnen', die durch Verwitterung dort entstehen, wo sich bei Theken von Dinophysiales die Sagittalnaht befinden würde. Eine Zuordnung zu bekannten rezenten Gattungen ist jedoch nicht möglich. Präformierte Archaeopyle konnten nicht gefunden werden. Doch ähneln die Strukturen von Wandoberfläche und Leisten denen von proximaten Peridiniales-Zysten, so daβ wir bei Nannoceratopsis ebenfalls auf Zysten-Stadien schlieβen dürfen.  相似文献   

10.
The objectives of this study were 1) to study the genetic diversity of the Alexandrium, Dinophysis and Karenia genera along the French coasts in order to design probes targeting specific DNA regions, and 2) to apply PCR-based detection to detect these three toxic dinoflagellate genera in natural samples. Genetic diversity of these toxic taxa was first studied from either cultures or cells isolated from Lugol-fixed field samples. By this way, partial sequences of the large ribosomal subunit (LSU rDNA) including the variable domains D1 and D2 of A. minutum, Alexandrium species inside the tamarensis complex, the D. acuminata complex and K. mikimotoi were obtained. Next, specific primers were designed for a selection of toxic algae and used during semi-nested PCR detection. This method was tested over a 3-month period on water samples from the Bay of Concarneau (Brittany, France) and on sediment from the Antifer harbor (The English Channel, France). Specificity and sensitivity of this molecular detection were evaluated using the occurrence of target taxa reported by the IFREMER (Institut Fran?ais de Recherche pour l'Exploitation de la Mer) monitoring network based on conventional microscopic examination. This work presents the first results obtained on the biogeographical distribution of genotypes of these three toxic genera along the French coasts.  相似文献   

11.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   

12.
Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.  相似文献   

13.
The identification of Dinophysis species with similar morphology but different toxic (Diarrhetic Shellfish Poisoning, DSP) potential is a crucial task in harmful algae monitoring programmes. The taxonomic assignment of Dinophysis species using molecular markers is a difficult task due to extremely low interspecific variability within their nuclear ribosomal genes and intergenic regions. Mitochondrial cox1 gene has been proposed as a better specific marker for Dinophysis species based on its higher resolution for two morphologically related species (Dinophysis acuminata and Dinophysis ovum) of the “Dinophysis acuminata complex”. In this study, the potential of two mitochondrial genes (mt cox1 and cob) to discriminate among six Dinophysis species (field isolates and cultures) associated with DSP events was explored. Neither mt cox1 nor cob genes provided enough resolution for all species of Dinophysis. The cob gene showed very poor resolution and grouped all Dinophysis spp. in a common clade. In contrast, the cox1 phylogeny distinguished 5 clades in the Dinophysiales – the “acuminata complex”, the “caudata group”, “acuta + norvegica” and Phalacromaspp. However, within the “D. acuminata complex” mtcox1 is so far the unique marker that differentiates D. acuminata from other species: isolates of D. ovum and Dinophysis sacculus had almost identical sequences (only four mismatches), but they were well separated from D. acuminata. D. acuminata and Dinophysis skagii (considered a life cycle stage of the former) showed identical cox1 sequences. Probes towards this gene can be useful in Mediterranean and Western Iberia sites where the co-occurrence of close morphotypes of D. acuminata and D. sacculus pose a problem for monitoring analyses. This is the first report on cultures of D. sacculus and its phylogenetic relation with other species of the D. acuminata complex.  相似文献   

14.
肖宁  曾祥  周江 《动物学杂志》2020,55(3):339-352
翼手目(Chiroptera)动物已被确认是人畜共患病毒的重要自然宿主。贵州省翼手目物种多样性资源丰富,包括了2亚目7科19属65种,但在其携带病毒方面的研究仍然不全面。本文基于病毒宏基因组学和s RNA病毒检测,对贵州省广泛分布的大蹄蝠(Hipposideriderosarmiger)、三叶蹄蝠(Aselliscus wheeleri)、贵州菊头蝠(Rhinolophus rex)和皮氏菊头蝠(R. pearsoni)携带的病毒进行注释及鉴定。通过分析得到所携带病毒的种类;并比较了贵州省与云南省和广西省3个地区翼手目携带病毒在种类上的差异。结果显示,在4种蝙蝠中检测出脊椎动物病毒、昆虫病毒、植物病毒、细菌病毒4大类,共计53科111属170余种病毒,其中具有公共卫生学意义病毒9科10属46种,如:人疱疹病毒1型病毒(Human herpesvirus 1)、戊型肝炎病毒(Hepatitis E virus)、人乳头瘤病毒16型(Human papillomavirustype16)等相关的病毒。贵州省与云南省和广西省3个地区的蝙蝠所携带病毒种类比较发现,只有腺病毒科(Adenovir...  相似文献   

15.
Marine epibenthic dinoflagellates have been collected from macroalgae, dead corals, seagrasses and sand in Malaysia and identified using light microscopy, including epifluorescence microscopy, and scanning electron microscopy. Examination of 62 samples revealed that Malaysia has rich diversity of benthic dinoflagellates, with 24 species representing 9 genera. Of these species, 8 were shown to be potentially toxic using the Anemia bioassay test i.e. Prorocentrum arenarium, P. lima, P. concavum, P. cf. faustiae, Gambierdiscus pacificus, Ostreopsis labens, O. ovata and Coolia sp. The diversity of potentially toxic species in Malaysian waters indicates that Malaysia may encounter problems with ciguatera and/or DSP. The highest species diversity was found at Sipadan Island with a total of 18 species identified. One of these is previously undescribed ( Prorocentrum sipadanensis sp. nov.). The most common species identified at all sampling sites were Prorocentrum lima and Ostreopsis ovata. Generally, the morphology of the species identified from Malaysian waters is similar to that reported in studies elsewhere. However, new features were also observed (e.g. a pyrenoid in Prorocentrum emarginatum and two different-sized pores in Ostreopsis labens ). The importance of SEM as a tool in taxonomic studies is stressed.  相似文献   

16.
The absorbance and fluorescence emission spectra for three species of Dinophysis, D. caudata Saville-Kent, D. fortii Pavillard, and D. acuminata Claparède et Lachmann, were obtained through an in vivo microanalytical technique using a new type of transparent filter. The pigment signatures of these Dinophysis species were compared to those of Synechococcus Nägeli, a cryptophyte, and two wild rhodophytes, as well as those of another dinoflagellate, a diatom, and a chlorophyte. Phycobilins are not considered a native protein group for dinoflagellates, yet the absorption and fluorescence properties of the three Dinophysis species were demonstrated to closely resemble phycobilins and chlorophylls of Rhodomonas Karsten (Cryptophyceae). Analyses of Dinophysis species using epifluorescence microscopy found no additional nucleus or nuclear remnant as would be contributed by an endosymbiont.  相似文献   

17.
Thin blood smears were collected from 126 mammals representing four genera of marsupials and six genera of murid rodents. A species of Hepatozoon was discovered in the New Guinea spiny bandicoot (Echymipera kalubu), trypanosome infections were found in three genera of rodent hosts and the prevalence of a rickettsial parasite of the genus Grahamella was recorded in rodents from the genera Rattus and Melomys. Dried blood samples also were taken and screened serologically for antibodies to arenavirus infection but with negative results.  相似文献   

18.
The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.  相似文献   

19.
The nucleotide sequence analysis of the PCR products corresponding to the variable large-subunit rRNA domains D1, D2, D9, and D10 from ten representative dinoflagellate species is reported. Species were selected among the main laboratory-grown dinoflagellate groups: Prorocentrales, Gymnodiniales, and Peridiniales which comprise a variety of morphological and ecological characteristics. The sequence alignments comprising up to 1,000 nucleotides from all ten species were employed to analyze the phylogenetic relationships among these dinoflagellates. Maximum parsimony and neighbor joining trees were inferred from the data generated and subsequently tested by bootstrapping. Both the D1/D2 and the D9/D10 regions led to coherent trees in which the main class of dinoflagellates, Dinophyceae, is divided in three groups: prorocentroid, gymnodinioid, and peridinioid. An interesting outcome from the molecular phylogeny obtained was the uncertain emergence of Prorocentrum lima. The molecular results reported agreed with morphological classifications within Peridiniales but not with those of Prorocentrales and Gymnodiniales. Additionally, the sequence comparison analysis provided strong evidence to suggest that Alexandrium minutum and Alexandrium lusitanicum were synonymous species given the identical sequence they shared. Moreover, clone Gg1V, which was determined Gymnodinium catenatum based on morphological criteria, would correspond to a new species of the genus Gymnodinium as its sequence clearly differed from that obtained in G. catenatum. The sequence of the amplified fragments was demonstrated to be a valuable tool for phylogenetic and taxonomical analysis among these highly diversified species. Correspondence to: J. M. Bautista  相似文献   

20.
Summary To compare the spatial and temporal (seasonal) distribution of dinoflagellates, vertical net hauls were taken along similar cruise tracks in the Scotia Sea, Weddell Sea and across the Polar Front Zone in the austral spring and the austral fall. Sixty-three species of armored dinoflagellates were identified and enumerated. Chisquare and hierarchical cluster analyses were performed to define spatial and seasonal patterns in genera and species assemblages. The dominant genera were Protoperidinium, Dinophysis and Ceratium. The Polar Front Zone was an important biogeographical barrier with Blepharocysta, Gonyaulax, Heteroschisma, Oxytoxum and Podolampas occurring mainly north of the Front. Species found primarily in the austral spring were Ceratium fusus, Ceratium lineatum, Dinophysis antarctica, Dinophysis simplex, Gonyaulax digitale, Protoperidinium pyriforme and Protoperidinium variegatum. Austral fall species included Dinophysis tuberculata and Protoperidinium elegantissum. Distribution of armored dinoflagellates in the Southwestern Atlantic Ocean is influenced at the generic level by spatial considerations, particular with relation to the Polar Front Zone, whereas species composition can be effected by both region and season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号