首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As reported previously, Integration Host Factor (IHF) stimulates cII expression but the stimulatory effect is prevented by the NusA protein (Peacock and Weissbach, 1985, Biochem. Biophys. Res. Commun. 127, 1026-1031). The interaction between IHF and the NusA protein has been investigated further in studies on the in vitro expression of the genes for the beta (rpoB) and sigma (rpoD) subunits of RNA polymerase, both known to be stimulated by NusA. The NusA stimulation of rpoD expression can be prevented by IHF, but IHF has no effect by itself on rpoD expression. IHF does not influence rpoB expression either in the presence or absence of NusA.  相似文献   

3.
4.
5.
6.
7.
Summary The unusual recombinant plasmid pRC19 carrying the N-terminal fragment of the Escherichia coli RNA polymerase rpoB gene was found to specify high level rifampicin resistance of E. coli cells. Sequence analysis of this plasmid revealed one substitution only: transversion GT, leading to amino acid substitution Val146Phe. This mutational change marks the second domain of the subunit involved in rifampicin binding.  相似文献   

8.
9.
Summary An amber fragment of the subunit of Escherichia coli RNA polymerase has been recovered from strains carrying the rpoB12 amber mutation, indicating that the B12 mutation resides in the structural gene for the subunit. The fragment is readily assayed and can be used to determine the degree of expression of a single rpoB cistron in strains haploid or diploid for this region. These studies confirm that the bacterial mechanism, which can compensate for reduced translation of the message, operates by the co-ordinate induction of rpoB and rpoC. Furthermore, I show that rpo control depends upon cistron(s) located on the F factor, KLF10, whose product(s) can act negatively in trans on rpoBC expression.  相似文献   

10.
11.
12.
Immunoblotting of size-separated whole cell proteins permitted the study of protein-protein interaction. Briefly, proteins obtained from cleared cell lysates of Escherichia coli were separated by glycerol gradient centrifugation and analysed by blotting against a set of specific antibodies. We have applied this procedure to the assembly of 11 N-terminal amber fragments of the beta subunit of E. coli RNA polymerase ranging in size between 97% and 23% the length of the intact beta polypeptide (1342 amino acids). In this way, we have been able to define regions on the beta polypeptide involved in the assembly of RNA polymerase.  相似文献   

13.
14.
The gene rpoB (rifD 18), which encodes rifampicin-resistant beta subunit of Escherichia coli RNA polymerase, has been placed on an overexpression plasmid under the control of bacteriophage T7 promoter. Induction of the T7 RNA polymerase gene in the host cells resulted in extensive overproduction of the beta polypeptide. Most of the overproduced material was recovered from cell lysates in insoluble form and was solubilized by extraction with 6 M urea. Purified overproduced beta subunit was added, in molar excess, to urea-denatured rifampicin-sensitive RNA polymerase. Upon removal of urea by dialysis, the reconstituted enzyme became rifampicin-resistant, indicating that overproduced beta subunit can be efficiently assembled into functional holoenzyme.  相似文献   

15.
16.
A minicell-producing strain of E.coli carrying an F′ factor, KLF10-1, forms minicells that contain plasmid but not chromosomal DNA. These minicells were found to synthesize two polypeptides corresponding precisely to the β and β′ subunits of RNA polymerase in SDS-polyacrylamide gel electrophoresis. In contrast, minicells obtained from an isogenic strain carrying F13-1 do not synthesize these proteins under similar conditions. These results indicate that the structural genes for the β′ as well as β subunits of the polymerase are located on the chromosomal segment (78 to 81 min on the standard genetic map of E.coli) carried by KLF10-1.  相似文献   

17.
Summary A collection of 95 independent, spontaneously-occurring mutants carrying amber lesions that affect expression of the gene, rpoB, has been isolated (see accompanying paper (Nene and Glass 1982)). Certain rpoB amber mutations act in trans, preventing a functional allele present on an F plasmid from acting at high temperature. Two such temperature-sensitive rpoB(Am) strains are shown to produce large, N-terminal amber fragments. The possibility that these truncated polypeptides are the cause of this trans-dominant conditional-lethal phenotype is supported by analysis of fragment levels in thermoresistant survivors: the nonsense fragments are degraded at a significantly faster rate (half-lives 1.4- to 2.6-fold reduced) in Ts+ derivatives likely to carry second-site mutations within rpoB. We suggest that the fragments interfere with RNA polymerase function by interacting with one or more of the polymerase subunits.  相似文献   

18.
The 1342 amino acid long beta subunit of Escherichia coli RNA polymerase includes a dispensable region (residues 940-1040) that is absent in homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria (Borukhov, S., Severinov, K., Kashlev, M., Lebedev, A., Bass, I., Rowland, G. C., Lim, P.-P., Glass, R. E., Nikiforov, V., and Goldfarb, A. (1991) J. Biol. Chem. 266, 23921-23926). Genetic disruption of this region by in-frame deletion or insertion sensitizes the beta subunit in assembled RNA polymerase molecules to attack by trypsin. We demonstrate that RNA polymerase with the beta polypeptide cleaved in the dispensable region retains normal in vitro activity. Moreover, the RNA polymerase activity is completely restored after denaturation and reconstitution of the enzyme carrying cleaved beta subunit indicating that its carboxyl- and amino-terminal parts fold and assemble into RNA polymerase as separate entities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号