首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adhesion between the tendon and tendon sheath after primary flexor tendon repair is seen frequently, and postoperative finger function is occasionally unsatisfactory. A reduction of the friction may facilitate tendon mobilization, which in turn may reduce the risk of the adhesion and restriction of range of motion. We considered the possibility of utilizing the hyaluronic acid (HA) as a lubricant. To evaluate the effect of HA, the gliding resistance between the canine flexor digitorum profundus tendon repaired by a modified Kessler suture technique with running epitendinous suture and the annular pulley located on the proximal phalanx (corresponding to the A2 pulley in humans) was evaluated and compared before and after administration of HA. The HA solution measurement groups were identified as follows; intact tendon as a control; repaired tendon; tendon soaked in 0.1, 1, and 10 mg/ml HA. The resistance increased after repairing, then it decreased after soaking in 10 mg/ml HA solution. The results of this study revealed that HA diminishes the excursion resistance after flexor tendon repair. We believe that some style of administration of the HA might reduce the excursion resistance and prevent adhesion until the synovial surface is fully developed.  相似文献   

2.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

3.
A new friction tester of the flexor tendon.   总被引:1,自引:0,他引:1  
We have developed a new device to measure the friction force and calculate the friction coefficient between a rabbit flexor tendon, a pulley and a proximal phalanx. The flexor digitorum fibularis tendon of a rabbit was taken intact with the proximal phalanx, and tendon pulleys were attached to both ends of the bone. Both ends of the tendon were clamped to acrylic plates and connected to stainless-steel plates equipped with strain gauges. A pretension of 1.96 N was applied so as not to loosen the tendon. The proximal phalanx was fixed to an acrylic plate on the actuator, which gave 8 mm of transfer to the acrylic plate at a speed of 2 mm/s. The interface between the tendon and the surrounded tissue created the friction force, when the load was applied on the distal pulley. The friction force could be obtained from the difference between the tension of both ends of the tendon, which was measured with strain gauges and sampled with a personal computer. The friction force and the friction coefficient were calculated from the measured force and the applied load. The load and the pre-loading time, which was defined as loading duration before gliding, were varied in order to observe the change of the friction coefficient. The friction coefficient was not affected by the load and increased with the pre-loading time. The value of mu(s) ranged from 0.027 to 0.111 (0.072 +/- 0.023), and that of (mu)d ranged from 0.010 to 0.069 (0.039 +/- 0.014) (pre-loading time was 5 s). Our method will allow for the examination of various surgical treatments and lubricants. Moreover, it can be applied to other tissues of any animals with similar structures to the rabbit's digitorum.  相似文献   

4.
A mathematical model proposed by Hume et al., 1991. Journal of Hand Surgery-American Volume 16, 722-730 for the determination of the forces acting on the A2 and A4 pulley was used. The parameters necessary for this determination include the angle of flexion, the positioning of the pulley with respect to the centre of rotation in the proximal interphalangeal joint (PIP), the relative mismatch between bone and tendon width at the location of the respective pulleys as well as the tendon height at this position. This model was further developed to include the stiffness of the respective pulley, as well as the fact, that there are two flexor tendons of which only one passes through both pulleys. Each parameter was then evaluated using a sensitivity analysis proposed by Fasham et al., 1990. Journal of Marine Research 48, 591-639 in order to determine their relative importance for the outcome of the model. The most important parameter proofed to be the positioning of the pulley with respect to the centre of rotation in the PIP joint. This observation enabled us to give the best possible placement for a pulley graft after pulley rupture.  相似文献   

5.
Tendon or ligament reconstructions often use autologous or allogenic tendons from either extrasynovial or intrasynovial sources. Allograft tendons must be lyophilized for preservation before transplantation, a process which can impact mechanical properties of the graft. Reconstituted graft properties that are similar to native tendon are desirable. Although tensile and compressive properties of tendons have been investigated, there is a paucity of information describing flexural properties of tendon, which can impact the gliding resistance. This study aims to design a testing method to quantify tendon flexural modulus, and investigate the effects of lyophilization/rehydration procedures on tendon flexibility. A total of 20 peroneus longus tendons (extrasynovial) and 20 flexor digitorum profundus tendons (intrasynovial) were collected. Ten of each tendon were processed with 5 freeze–thaw cycles followed by lyophilization and rehydration with saline solution (0.9%). Bend testing was conducted on tendons to quantify the flexural modulus with and without processing. As canine FDP tendons contain fibrous and fibrocartilaginous tissue regions, the flexural moduli were measured in both regions. Flexural modulus of rehydrated, lyophilized extrasynovial PL tendon was significantly lower than that of similarly processed intrasynovial FDP tendon (p < 0.001). Flexural moduli of both the fibrocartilaginous and non-fibrocartilaginous regions of intrasynovial tendon significantly increased after lyophilization (p < 0.001). The flexural modulus of the fibrocartilaginous region was significantly higher than that of the non-fibrocartilaginous region in intrasynovial tendon (p < 0.001). Lyophilization significantly increases the flexural modulus of extrasynovial and intrasynovial tendons, and flexural modulus differs significantly between these two tendon types. Increases in stiffness caused by lyophilization may impact the mechanical performance of the allograft in vivo.  相似文献   

6.
Kinetic analysis of canine gait has been extensively studied, including normal and abnormal gait. However, no research has looked into how flexor tendon injury and further treatment would affect the walking pattern comparing to the uninjured state. Therefore, this study was aimed to utilize a portable pressure walkway system, which has been commonly used for pedobarographic and kinetic analysis in the veterinary field, to examine the effect of a failed tendon repair and tendon graft reconstruction on canine digit kinetics during gait. 12 mixed breed (mongrel) hound-type female dogs were included in this study and 2nd and 5th digits were chosen to undergo flexor tendon repair and graft surgeries. Kinetic parameters from the surgery leg in stance phase were calculated. From the results, after tendon failure repair, decrease of weight bearing was seen in the affected digits and weight bearing was shifted to the metacarpal pad. After tendon graft reconstruction, weight bearing returned to the affected digits and metacarpal pads. Slight alteration in peak pressure and instant of peak force were identified, but it was estimated to have little influence on post-reconstruction gait. This study could serve as a reference in evaluating canine digit function in flexor tendon injury for future studies.  相似文献   

7.
The development of the synovial sheathed flexor digital tendon in the chick was studied by light and electron microscopy in 12-day embryos to 22-day post-hatched chickens. Areas of specialized connective tissue differentiation were identified in this complex structure consisting of a lubricated synovial sheath, elastic vincula and fibrocartilaginous adaptations on the surface of the tendon. The presence of some of these specialized adaptations may be related to the specific types of mechanical forces and stresses applied to the developing connective tissue system. This model system appears to be appropriate for the experimental study of tendon injuries related to the human hand.  相似文献   

8.
In this study we investigated the influence of the loading condition (concentric vs. eccentric loading) on the pulley system of the finger. For this purpose 39 cadaver finger (14 hands, 10 donors) were fixed into an isokinetic loading device. The forces in the flexor tendons and at the fingertip were recorded. In the concentric loading condition A2 and A4 ruptures as well as alternative events such as fracture of a phalanx or avulsion of the flexor tendons were almost equally distributed, whereas the A2 pulley rupture was the most common event (59%) in the eccentric loading condition and alternative events were rare (23.5%). The forces in the deep flexor tendon, the fingertip and in the pulleys were significantly lower in the eccentric loading condition. As the ruptures occurred at lower loads in the eccentric than in the concentric loading condition it can be concluded that friction may be an advantage for climbers, supporting the holding force of their flexor muscles but may also increase the susceptibility to injury.  相似文献   

9.
Transected flexor tendons are typically treated by suture repair followed by rehabilitation that generates repetitive tendon loading. Recent results in an in vivo canine model indicate that during the first 10 days after injury and repair, there is an increase in the rigidity of the tendon repair site. Our objective was to determine whether or not ex vivo cyclic loading of repaired flexor tendons causes a similar increase in repair-site rigidity. We simulated 10 days of rehabilitation by applying 6000 loading cycles to repaired canine flexor tendons ex vivo at force levels generated during passive motion rehabilitation; we then evaluated their tensile mechanical properties. High-force (peak force, 17 N) cyclic loading increased repair-site rigidity by 100% and decreased repair-site strain by 50%, whereas low-force (5 N) loading did not change the properties of the repair site. This mechanical conditioning effect may explain, in part, the changes in tensile properties observed after only 10 days of healing in vivo. Mechanical conditioning of repaired flexor tendons by repetitive forces applied during rehabilitation may lead to increases in repair-site rigidity and decreases in strain, thereby altering the mechanical loading environment of tissues and cells at the repair site.  相似文献   

10.
Flexor tendon pulley ruptures are the most common injury in rock climbers. Therapeutic standards usually include a prolonged use of taping applied as a replacement for the lost pulley in a circular fashion at the base of the proximal phalanx. Our biomechanical considerations, however, suggest a new taping method, the H-tape. The purpose of the study is to evaluate whether this new taping method can effectively change the course of the flexor tendon and therefore reduce the tendon-bone distance. In order to compare the effects of different taping methods described in the literature with the newly developed taping method, we performed standardized ultrasound examinations of 8 subjects with singular A2 pulley rupture and multiple pulley ruptures of A2 and A3 pulleys and determined the respective tendon-bone distance for the different taping methods, versus without tape at a preset position on the proximal phalanx. In a second approach, we evaluated the effect of the new taping method on the strength of the injured finger using a force platform on 12 subjects with different pulley ruptures with injuries older than 1 year. The new taping method decreased the tendon-bone distance in the injured finger significantly by 16%, whereas the other taping methods did not. The strength development was significantly better with the new tape for the crimp grip position (+13%), but there was no significant improvement for the hanging position. We recommend taping with the newly presented taping technique after pulley rupture.  相似文献   

11.
The force and excursion within the canine digital flexor tendons were measured during passive joint manipulations that simulate those used during rehabilitation after flexor tendon repair and during active muscle contraction, simulating the active rehabilitation protocol. Tendon force was measured using a small buckle placed upon the tendon while excursion was measured using a suture marker and video analysis method. Passive finger motion imposed with the wrist flexed resulted in dramatically lower tendon force (approximately 5 N) compared to passive motion imposed with the wrist extended (approximately 17 N). Lower excursions were seen at the level of the proximal interphalangeal joint with the wrist flexed (approximately 1.5 mm) while high excursion was observed when the wrist was extended or when synergistic finger and wrist motion were imposed (approximately 3.5 mm). Bivariate discriminant analysis of both force and excursion data revealed a natural clustering of the data into three general mechanical paradigms. With the wrist extended and with either one finger or four fingers manipulated, tendons experienced high loads of approximately 1500 g and high excursions of approximately 3.5 mm. In contrast, the same manipulations performed with the wrist flexed resulted in low tendon forces (4-8 N) and low tendon excursions of approximately 1.5 mm. Synergistic wrist and finger manipulation provided the third paradigm where tendon force was relatively low (approximately 4 N) but excursion was as high as those seen in the groups which were manipulated with the wrist extended. Active muscle contraction produced a modest tendon excursion (approximately 1 mm) and high or low tendon force with the wrist extended or flexed, respectively. These data provide the basis for experimentally testable hypotheses with regard to the factors that most significantly affect functional recovery after digital flexor tendon injury and define the normal mechanical operating characteristics of these tendons.  相似文献   

12.
The present work displayed the first quantitative data of forces acting on tendons and pulleys during specific sport-climbing grip techniques. A three-dimensional static biomechanical model was used to estimate finger muscle tendon and pulley forces during the "slope" and the "crimp" grip. In the slope grip the finger joints are flexed, and in the crimp grip the distal interphalangeal (DIP) joint is hyperextended while the other joints are flexed. The tendons of the flexor digitorum profundus and superficialis (FDP and FDS), the extensor digitorum communis (EDC), the ulnar and radial interosseus (UI and RI), the lumbrical muscle (LU) and two annular pulleys (A2 and A4) were considered in the model. For the crimp grip in equilibrium conditions, a passive moment for the DIP joint was taken into account in the biomechanical model. This moment was quantified by relating the FDP intramuscular electromyogram (EMG) to the DIP joint external moment. Its intensity was estimated at a quarter of the external moment. The involvement of this parameter in the moment equilibrium equation for the DIP joint is thus essential. The FDP-to-FDS tendon-force ratio was 1.75:1 in the crimp grip and 0.88:1 in the slope grip. This result showed that the FDP was the prime finger flexor in the crimp grip, whereas the tendon tensions were equally distributed between the FDP and FDS tendons in the slope grip. The forces acting on the pulleys were 36 times lower for A2 in the slope grip than in the crimp grip, while the forces acting on A4 were 4 times lower. This current work provides both an experimental procedure and a biomechanical model that allows estimation of tendon tensions and pulley forces crucial for the knowledge about finger injuries in sport climbing.  相似文献   

13.
In this study the influence of the grip position (crimp grip vs. slope grip position) on the pulley system of the finger was investigated. For this purpose 21 cadaver finger (11 hands, 10 donors) were fixed into an isokinetic loading device. Nine fingers were loaded in the slope grip position and 12 fingers in the crimp grip position. The forces in the flexor tendons and at the fingertip were recorded. A rupture of the A4 pulley occurred most often in the crimp grip position (50%) but did not occur in the slope grip position, in which alternative events were the most common (67%). The forces in the deep flexor tendon (FDP) (slope grip: 371 N, crimp grip: 348 N) and at the fingertip (slope grip: 105 N, crimp grip: 161 N) were not significantly different between the 2 finger positions, but the forces acting on the pulleys were higher in the crimp grip position (A2 pulley: 287 N, A4 pulley: 226 N) than in the slope grip position (A2 pulley: 121 N, A4 pulley: 103 N). The crimp grip position may be the main cause for A4 pulley ruptures but the slope grip position may be hazardous for other injuries as the forces recorded in the flexor tendons and at the fingertip were comparable at the occurrence of a terminal event.  相似文献   

14.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

15.
The purpose of this study was to assess the value of using intraoperative sonography to assist percutaneous release of the A1 pulley in cadavers. By detailed sonographic examination and anatomical exploration, the authors determined the correlation of the actual A1 and A2 pulleys (and adjacent neurovascular bundles not visualized by sonography) to the clearly visualized flexor tendons and the metacarpophalangeal joint. The authors also evaluated their effectiveness as landmarks and the effectiveness of real-time sonographic monitoring during percutaneous release. Experiments were performed on 80 fingers and 20 thumbs in 10 cadavers. All digits were sonographically examined. The clearly delineated bony landmarks of the metacarpophalangeal joint were measured and marked. The A1 and A2 pulleys and the neurovascular bundles were surgically exposed, and their relation to the markers made during sonographic examination was measured. Using these parameters, sonographically assisted percutaneous release of the A1 pulley with a custom-made hook knife was performed on the contralateral side. The completeness of the A1 release and the potential risk of injuries to the A2, flexor tendon, and neurovascular bundles in each digit were examined. Results showed good correlation between the actual length of the A1 pulleys and the sonographically determined distance between the bony prominences of the metacarpophalangeal joint in all digits. Release was complete in 48 of the 50 digits (96 percent) and partial in two, with no injuries to neurovascular bundles. Sonography can clearly delineate the flexor tendon and underlying bony boundary of the metacarpophalangeal joint, which is useful in directing the percutaneous release of the A1 pulley. Sonography can also provide real-time intraoperative monitoring. The results using this new release technique were adequate. The method is safe and its clinical application should be encouraged.  相似文献   

16.
The role of tenascin-C in adaptation of tendons to compressive loading   总被引:3,自引:0,他引:3  
Although most tendon regions are subjected primarily to high tensile loads, selected regions, primarily those that directly contact bones that change the direction of the tendon, must withstand high compressive loads as well. Compressed tendon regions differ from regions subjected to primarily tensile loads: they have a fibrocartilaginous structure with spherical cells surrounded by a matrix containing aggrecan and collagen types I and II, in contrast regions not exposed to compression have a fibrous structure with spindle shaped fibroblasts surrounded by a matrix of dense, longitudinally oriented type I collagen fibrils. The spherical shape of cells in fibrocartilagenous regions indicates these cells are more loosely attached to the matrix than their spindle-shaped counterparts in fibrous regions, a feature that may help to minimize cell deformation during tendon compression. We hypothesized that expression of tenascin-C, an anti-adhesive protein, is part of the adaptation of tendon cells to compression that helps establish and maintain fibrocartilaginous regions. To test this hypothesis we compared tenascin-C content and expression in compressed (distal) versus uncompressed (proximal) segments of bovine flexor tendons. Immunohistochemistry and immunoblot analyses showed that tenascin-C content was increased in the distal tendon where it co-distributed with type II collagen and aggrecan. Tendon cells from the distal segments expressed more tenascin-C than did cells from the proximal segments for up to four days in cell culture, indicating that increased tenascin-C expression is a relatively stable feature of the distal cells. These observations support the hypothesis that tenascin-C expression is a cellular adaptation to compression that helps establish and maintain fibrocartilagenous regions of tendons.  相似文献   

17.
Several investigators have recently used fiberoptic cables to measure tendon forces in situ. The technique may be subject to significant error due to cable migration and differences in the loading rates used for calibration and those experienced during measurement. This in vitro study examined the impact of these potential sources of error on transducer accuracy. A fiberoptic cable was passed perpendicular to the fibers of four Achilles tendons in the mediolateral direction and each specimen was cyclically loaded to 1000 N. The influence of loading rate on transducer output was investigated by comparing results from tests conducted at 20, 200 and 1000 N/s. The effect of cable migration was examined by comparing the outputs obtained after displacing the cable one tendon width medially and laterally along its path in the tendon and then repeating the 200 N/s testing protocol. It was possible to obtain nonlinear specimen-specific relationships between the fiberoptic output and tendon force. Differences in loading rate resulted in root-mean-square (RMS) errors not larger than 17% maximum load. Hysteresis effects caused RMS errors smaller than 5% maximum load. Cable migration errors were less than 27%. The total RMS error due to the combined effects of loading rate difference and cable movement was less than 32%. Fiberoptic measurement of tendon force is attractive due to its low cost, easy implementation and comparable accuracy relative to other implantable force transducers. Although additional factors such as cable placement, edge artifacts due where the transducer exits the skin and non-uniform loading may also influence fiberoptic output, careful control of loading rate and transducer movement during calibration is imperative if maximum accuracy is to be achieved.  相似文献   

18.
The pulley system in the flexor sheath of the long toe of the white leghorn chicken foot was studied. Histologic sections of the pulleys were prepared, and the mechanics of flexion of the long toe was analyzed. An annular flexor pulley that attached to the third phalanx was identified. This pulley, which has not been described previously, was found to be essential for proper flexion of the third interphalangeal joint.  相似文献   

19.
Flexor tendons function as energy storage and shock absorption structures in the tarsometatarso‐phalangeal joint (TMTPJ) of ostrich feet during high‐speed and heavy‐load locomotion. In this study, mechanisms underlying the energy storage and shock absorption of three flexor tendons of the third toe were studied using histology and scanning electron microscopy (SEM). Macroscopic and microscopic structures of the flexor tendons in different positions of TMTPJ were analyzed. Histological slices showed collagen fiber bundles of all flexor tendons in the middle TMTPJ were arranged in a linear‐type, but in the proximal and distal TMTPJ, a wavy‐type arrangement was found in the tendon of the M. flexor digitorum longus and tendon of the M. flexor perforans et perforatus digiti III, while no regular‐type was found in the tendon of the M. flexor perforatus digiti III. SEM showed that the collagen fiber bundles of flexor tendons were arranged in a hierarchically staggered way (horizontally linear‐type and vertically linear‐type). Linear‐type and wavy‐type both existed in the proximal TMTPJ for the collagen fiber bundles of the tendon of the M. flexor perforatus digiti III, but only the linear‐type was found in the distal TMTPJ. A number of fibrils were distributed among the collagen fiber bundles, which were likely effective in connection, force transmission and other functions. The morphology and arrangement of collagen fiber bundles were closely related to the tendon functions. We present interpretations of the biological functions in different positions and types of the tendons in the TMTPJ of the ostrich feet.  相似文献   

20.
In 12 patients, the extensor carpi radialis longus muscle tendon unit was elongated using the radial half of the parent tendon so that it could reach the site of new insertion, the A1-A2 pulley of flexor sheath or lateral bands, after routing the transfer through the carpal tunnel. The tendon was of appropriate thickness and could be split into two halves to be used as a graft. Further splitting of the tendon into four tails was possible. The transferred slips retained adequate strength to activate the fingers after the operation. It is suggested that splitting of the extensor carpi radialis longus tendon to use one half as a tendon graft be considered in patients in whom extensor carpi radialis longus transfer is planned to correct finger clawing. This technique is simple, needs minor modification in the sequence of operative steps, reduces operating time, and saves the patient from postoperative discomfort, muscle herniation, and scarring at the donor site (usually the thigh).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号