首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice were maintained on diets containing haloperidol or clozapine for 8–10 days. Two days after these drug-containing diets were withdrawn the effects of apomorphine were determined on locomotor activity and on the retardation of dopamine depletion produced by synthesis inhibition with α-methyltyrosine. After either neuroleptic the effects of apomorphine were enhanced when compared with mice maintained on a control diet, suggesting the development of supersensitive dopamine receptors.  相似文献   

2.
Overproduction of corticotrophin-releasing factor (CRF), the major mediator of the stress response, has been linked to anxiety, depression and addiction. CRF excess results in increased arousal, anxiety and altered cognition in rodents. The ability to adapt to a potentially threatening stimulus is crucial for survival, and impaired adaptation may underlie stress-related psychiatric disorders. Therefore, we examined the effects of chronic transgenic neural CRF overproduction on behavioural adaptation to repeated exposure to a non-home cage environment. We report that CRF transgenic mice show impaired adaptation in locomotor response to the novel open field. In contrast to wild-type (WT) mice, anxiety-related behaviour of CRF transgenic mice does not change during repeated exposure to the same environment over the period of 7 days or at retest 1 week later. We found that locomotor response to novelty correlates significantly with total locomotor activity and activity in the centre at the last day of testing and at retest in WT but not in CRF transgenic mice. Mice were divided into low responders and high responders on the basis of their initial locomotor response to novelty. We found that differences in habituation and re-exposure response are related to individual differences in locomotor response to novelty. In summary, these results show that CRF transgenic mice are fundamentally different from WT in their ability to adapt to an environmental stressor. This may be related to individual differences in stress reactivity. These findings have implications for our understanding of the role of CRF overproduction in behavioural maladaptation and stress-related psychiatric disorders.  相似文献   

3.
Insulin, insulin-like growth factor-1 (IGF-1), and leptin signaling have been proposed to play an important role in regulating energy homeostasis. In order to specifically address the role of neuronal IGF-1 receptor (IGF-1R) signaling for energy expenditure and metabolism we used conditional mutagenesis. Deletion of one copy of the IGF-1R specifically in post-mitotic neurons (nIGF-1R(+/-)?) does not result in growth retardation or skeletal abnormalities. Interestingly, male nIGF-1R(+/-) mice accumulate less fat mass during aging accompanied with decreased leptin levels compared to wild-type littermates. Furthermore, male nIGF-1R(+/-) mice present with increased locomotor activity and energy expenditure. In contrast, female nIGF-1R(+/-) mice remained nearly unaffected. Circadian pattern of locomotor activity and energy expenditure as well as food and water intake did not change. Consistent with increased locomotor activity, the respiratory quotient was shifted to increased fat oxidation in nIGF-1R(+/-) mice. Surprisingly, serum IGF-1 and IGF-1 binding protein 3 (IGF-BP3) concentrations were decreased in nIGF-1R(+/-) mice despite the presence of normal pituitaries suggesting a functional feedback mechanism via neuronal IGF-1Rs, which regulate serum IGF-1 levels. Thus, we show that neuron-specific IGF-1R deletion in male mice decreases body fat accumulation and increases energy expenditure during aging.  相似文献   

4.
The delta sleep-inducing peptide (DSIP) has been shown to induce effects other than only delta sleep. One of these effects was the paradoxical thermoregulatory and locomotor response of rats to amphetamine after DSIP administration. In the present investigation we found similar effects of DSIP on the locomotor activity in mice. However, two different doses of DSIP (30 and 120 nmol/kg) and 3 doses of amphetamine (4, 10, and 15 mg/kg) produced a complex pattern of effects in mice tested at 22 degrees C. In general, DSIP-treated mice showed lower locomotor activity after amphetamine than controls, but under two conditions, both using 15 mg/kg amphetamine, DSIP produced higher scores; this occurred in the first two hours after amphetamine for the 30 nmol/kg DSIP group and in the third hour for mice given 120 nmol/kg DSIP. The results indicate that the effects of DSIP on locomotor behavior were dependent on the dosage of the peptide and the time of measurement as well as the level of amphetamine stimulation.  相似文献   

5.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. Neurotrophic factors are crucial for the plasticity of central nervous system and may be involved in long-term responses to drug exposure. To study the effects of reduced GDNF on dopaminergic behaviour related to addiction, we compared the effects of morphine on locomotor activity, conditioned place preference (CPP) and extracellular accumbal dopamine in heterozygous GDNF knockout mice (GDNF+/-) with those in their wild-type (Wt) littermates. When morphine 30 mg/kg was administered daily for 4 days, tolerance developed towards its locomotor stimulatory action only in the GDNF+/- mice. A morphine 5 mg/kg challenge dose stimulated locomotor activity only in the GDNF+/- mice withdrawn for 96 h from repeated morphine treatment, whereas clear and similar sensitization of the locomotor response was seen after a 10 mg/kg challenge dose in mice of both genotypes. Morphine-induced CPP developed initially similarly in Wt and GDNF+/- mice, but it lasted longer in the Wt mice. The small challenge dose of morphine increased accumbal dopamine output slightly more in the GDNF+/- mice than in the Wt mice, but doubling the challenge dose caused a dose-dependent response only in the Wt mice. In addition, repeated morphine treatment counteracted the increase in the accumbal extracellular dopamine concentration we previously found in drug-naive GDNF+/- mice. Thus, reduced endogenous GDNF level alters the dopaminergic behavioural effects to repeatedly administered morphine, emphasizing the involvement of GDNF in the neuroplastic changes related to long-term effects of drugs of abuse.  相似文献   

6.
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.  相似文献   

7.
8.
Neonatal malnutrition and/or undernutrition of limited duration appears to permanently influence steady state amino acid content of the adult mouse cerebellum and/or brainstem. Some of the changes seem related to the protein content of the milk (glutamine), whereas others reflect the taurine concentration in the milk during the neonatal period (glutamic acid and GABA). Adult levels of taurine, serine, and glycine in the cerebellum-brainstem may in part be influenced by the degree of growth retardation which occurred during the first 16 days of neonatal life. Provided the combined adult weight of the cerebellum and brainstem can be used as one criterion to determine growth retardation during the neonatal period, it appears justified to state that mice do not recover from malnutrition/undernutrition when subjected to such conditions during early infancy.  相似文献   

9.
Lead is a nonphysiological metal that has been implicated in toxic processes that affect several organ systems in humans and other animals. Although the brain generally has stronger protective mechanisms against toxic substances than other organs have, exposure to lead results in several neurophysiological and behavioral symptoms. The administration of a single injection (i.p.) of lead acetate in mice is a model of acute Pb2 + toxicity. In the present study, this model was used to explore the magnitude of the effect of different doses, time intervals and mice strains on several biobehavioral parameters. We investigated the effects of acute lead acetate administration on body and brain weight, brain lead acetate accumulation and specially, spontaneous locomotion and brain catalase activity. Lead acetate was injected i.p. in outbred (Swiss or CD1) and inbred (BALB/c, C57BL/J6 or DBA/2) mice at doses of 0, 50, 100, 150 or 200 mg/kg. At different time intervals following this acute treatment, several biochemical, physiological and behavioral responses were recorded. Results indicated that acute lead acetate has deleterious dose-dependent effects on brain and body weight. The effect on body weight in the present study was transient, although lead acetate was detected in neural tissues for several days after administration. Spontaneous locomotor activity only was reduced up until 24 hours. The effect of lead on body weight was strain-dependent, with Swiss mice showing greater resistance compared to the other strains. Total brain catalase activity in lead-pretreated Swiss mice showed a significant induction. This enzymatic upregulation could provide a protective mechanism for oxidative stress in these mice.  相似文献   

10.
The effects of parental and progeny rearing densities on locomotor activity in 1st-stadium nymphs of the migratory locust, Locusta migratoria, were observed over a 24- or 36-h period using an actograph. Newly hatched nymphs showed a small activity peak shortly after hatching and the peak level was significantly higher in offspring (gregarious nymphs) of crowd-reared adults than in those (solitarious nymphs) of isolated-reared adults. However, no significant difference was found between the two groups in maximum activity levels exhibited after the initial peak. Post-hatching crowding enhanced locomotor activity during 2-5 h of measurements in 2-day-old nymphs. In this case, the parental density resulted in no significant influence on locomotor activity. However, the maximum activity level shown later in the observation period was higher in gregarious nymphs than in solitarious nymphs. Interestingly, this parental effect was more pronounced in nymphs reared in group than in those reared in isolation. The parental density appeared to affect the degree of response to crowding in the progeny. No evidence was found for the phase accumulation in terms of locomotor activity. The variation observed in locomotor activity among geographical populations did not correspond to their phylogenetic relationships.  相似文献   

11.
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate.  相似文献   

12.
Potential action of ultra-wideband (UWB) electromagnetic field pulses on effects of N(G)-nitro- L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), on nociception and locomotor activity was investigated in CF-1 mice. Animals were injected IP with saline or 50 mg/kg L-NAME and exposed for 30 min to no pulses (sham exposure) or UWB pulses with electric field parameters of 102+/-1 kV/m peak amplitude, 0.90+/-0.05 ns duration, and 160+/-5 ps rise time (mean+/-S.D.) at 600/s. Animals were tested for thermal nociceptive responses on a 50 degrees C surface and for spontaneous locomotor activity for 5 min. L-NAME by itself increased mean first-response (paw lift, shake, or lick; jump) and back-paw-lick response latencies and mean locomotor activity. Exposure to UWB pulses reduced the L-NAME-induced increase in back-paw-lick latency by 22%, but this change was not statistically significant. The L-NAME-induced hyperactivity was not present after UWB exposure. Reduction and cancellation of effects of L-NAME suggest activation of opposing mechanism(s) by the UWB pulses, possibly including increase of nitric oxide production by NOS. The action, or actions, of UWB pulses appears to be more effective on locomotor activity than on thermal nociception in CF-1 mice.  相似文献   

13.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

14.
Michna L  Lu YP  Lou YR  Wagner GC  Conney AH 《Life sciences》2003,73(11):1383-1392
Administration of green tea or caffeine was shown previously to inhibit ultraviolet B light-induced carcinogenesis in SKH-1 mice, and this effect was associated with a reduction in dermal fat. In the present study, oral administration of 0.6% green tea (6 mg tea solids/ml) or 0.04% caffeine (0.4 mg/ml; equivalent to the amount of caffeine in 0.6% green tea) as the sole source of drinking fluid to SKH-1 mice for 15 weeks increased total 24 hr locomotor activity by 47 and 24%, respectively (p<0.0001). Oral administration of 0.6% decaffeinated green tea (6 mg tea solids/ml) for 15 weeks increased locomotor activity by 9% (p<0.05). The small increase in locomotor activity observed in mice treated with decaffeinated green tea may have resulted from the small amounts of caffeine still remaining in decaffeinated green tea solutions (0.047 mg/ml). The stimulatory effects of orally administered green tea and caffeine on locomotor activity were paralleled by a 38 and 23% increase, respectively, in the dermal muscle layer thickness. In addition, treatment of the mice with 0.6% green tea or 0.04% caffeine for 15 weeks decreased the weight of the parametrial fat pad by 29 and 43%, respectively, and the thickness of the dermal fat layer was decreased by 51 and 47%, respectively. These results indicate that oral administration of green tea or caffeine to SKH-1 mice increases locomotor activity and muscle mass and decreases fat stores. The stimulatory effect of green tea and caffeine administration on locomotor activity described here may contribute to the effects of green tea and caffeine to decrease fat stores and to inhibit carcinogenesis induced by UVB in SKH-1 mice.  相似文献   

15.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

16.
The circulating and tissue-bound forms of follistatin (FST315 and FST288, respectively) modulate the actions of activins. FST knockout (KO/null) mice, lacking both isoforms, die perinatally with defects in lung, skin, and the musculoskeletal system. Using constructs of the human FST gene engineered to enable expression of each isoform under the control of natural regulatory elements, transgenic mouse lines were created and crossed with FST null mice to attempt to rescue the neonatal lethality. FST288 expression alone did not rescue the neonatal lethality, but mice expressing FST315 on the KO background survived to adulthood with normal lung and skin morphology and partial reversal of the musculoskeletal defects noted in FST KO mice. The FST315 rescue mice displayed a short period of neonatal growth retardation, impaired tail growth, and female infertility. The latter may be due to failure of corpus luteum formation, a decline in the ovarian follicular population, and an augmented uterine inflammatory response to mating. Failure of corpus luteum formation and impaired tail growth indicate abnormal vascularization and suggest that FST288 is required for the promotion of angiogenesis. The augmented uterine inflammatory response may result from the failure of FST315 to modulate the proinflammatory actions of activin A in the uterus or may result from the altered steroid milieu associated with the ovarian abnormalities. Although we cannot definitively conclude that the remaining defects are due to the absence of a particular isoform or due to variable expression of each, these models have demonstrated novel physiological processes that are influenced by FST.  相似文献   

17.
Effect on locomotion of indole alkaloids from the hooks of uncaria plants.   总被引:3,自引:0,他引:3  
Three predominant Uncariae plants, Uncaria rhynchophylla U. sinensis and U. macrophylla and their indole and oxindole alkaloid constituents were studied for their effect on locomotor response. Water extracts of U. macrophylla and U. sinensis and four indole alkaloids, corynoxine, corynoxine B, isorhynchophylline and geissoschizine methyl ether, significantly decreased locomotor activity after oral administration to mice. The depression of locomotor activity upon administration of these alkaloids appears to be due to mediating of the central dopaminergic system.  相似文献   

18.
Epidermal growth factor (EGF) causes precocious eruption of incisors in vivo and is mitogenic for tooth-derived cells in vitro. These two observations lead to the hypothesis that the EGF-induced precocious eruption is the result of an increase in the size of the incisor. To test this hypothesis, neonatal mice were injected daily with various doses of EGF and, seven days after birth, were perfused with fixative. EGF causes a retardation of overall growth (as measured by body weight) and a dose-dependent thickening of the epidermis. The incisors were examined in midsagittal histological sections and in X-ray microradiographs. Contrary to our expectations, EGF causes a dose-dependent decrease in the size of the incisors. This result suggests that the stimulation of the growth of odontogenic cells seen in tissue culture is not part of the physiological response to EGF in vivo and that EGF-induced precocious eruption of incisors is not due to an increase in the growth rate of the tooth.  相似文献   

19.
L J Wilks  S E File 《Life sciences》1988,42(23):2349-2357
The effects, in mice, of a single dose of lorazepam or oxazepam were determined, in the holeboard, 24, 48 and 72 hours after treatment. Lorazepam produced significant increases in both spontaneous locomotor activity and in rearing 48 hours after treatment and oxazepam produced a significant overall increase in rearing over the three time points. There was no detectable in vivo receptor occupancy for either drug at the 48 hour time point, so that these effects were not due to residual concentrations of drug in the brain. We therefore suggest that we were detecting a spontaneous withdrawal response to a single dose of benzodiazepine. The increases in both locomotor activity and rearing, detected 48 hours after lorazepam, could be reversed by treating simultaneously with Ro 15-1788 (a benzodiazepine antagonist). When Ro 15-1788 was injected 20 minutes prior to testing, the mice that had been treated 48 hours previously with lorazepam still showed increased locomotor activity and rearing. We conclude that the hyperactivity was not caused by any change in the levels of endogenous substances acting at the benzodiazepine receptor.  相似文献   

20.
R B Parker 《Life sciences》1978,22(12):1067-1076
In an effort to discover if various classes of drugs could be differentiated on the basis of their ability to inhibit spontaneous and methamphetamine-induced locomotor activity, a series of drugs with a variety of pharmacological effects was tested for activity as inhibitors of spontaneous and methamphetamine-induced locomotor activity in mice. When ED50 values for the inhibition of spontaneous locomotor activity are compared to those for inhibition of locomotor activity in the presence of methamphetamine, it is found that approximately the same doses produce 50% inhibition of locomotor activity in both cases. It appears that effects on locomotor activity in the presence and absence of methamphetamine, as described in this paper, cannot be used to differentiate among the various classes of drugs tested. This finding implies that interpretation of anti-methamphetamine activity in drugs must be done with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号