首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study we reported that FSH receptors in bovine testes membranes are physically and functionally associated with a guanine nucleotide-binding protein (N protein). In this study we examined the mechanism whereby GTP binding to N protein regulates FSH binding to its receptors. Binding of FSH to receptors decreased in the presence of GTP in a dose-dependent and noncompetitive manner. This effect did not require the presence of Mg+2 and is in contrast to the reported requirement for Mg+2 for GTP effects on human CG binding to ovarian receptors. Equilibrium binding experiments indicated that decreased hormone binding in the presence of GTP was not due to a decrease in the number of FSH receptors per se; rather, the altered binding isotherm was the result of a decrease in affinity of receptors for FSH. Moreover, the dissociation of [125I]human FSH from preformed FSH-receptor complex was rapid in onset and significantly accelerated in the presence of GTP. In a series of nucleotides, GTP was most effective in causing this effect. Evidently, occupancy of GTP binding sites on the N protein, including low affinity and high capacity sites, is necessary for GTP regulation of FSH binding to receptors. The fact that pretreatment of bovine testis membranes with cholera toxin plus NAD, but not pertussis toxin plus NAD, eliminates the GTP effect on FSH binding to its receptors suggests that the GTP regulatory binding protein mediating the GTP regulation of FSH binding is probably Ns and not Ni. Further characterization of FSH receptor sensitivity to GTP, however, indicated that the N protein involved does not exhibit all of the characteristics reported for Ns. For example, the affinity of GTP for N protein is relatively low even under conditions where GTP hydrolysis has a minimal effect in reducing the total concentration of GTP. Also, the absence of a requirement for Mg+2 in high affinity FSH receptor-N protein coupling is different from the requirement for Mg+2 seen with the beta-adrenergic receptor and Ns. Moreover, the N protein which mediates GTP regulation of FSH-receptor binding appears to be relatively insensitive to N-ethylmaleimide, unlike the N-ethylmaleimide sensitivity of the turkey erythrocyte Ns. These results suggest that differences may exist in the structure-function features of GTP regulatory binding protein associated with different types of hormone ligands and receptors.  相似文献   

2.
The addition of GTP (50 M), MnCl2 (1 mM) or EDTA (2 mM) had no effect on the affinity or capacity of bovine striatal plasma membranes for [3H]spiperone. However, GTP caused a decrease in the potency of dopamine as an inhibitor of [3H]spiperone binding under all conditions tested. Manganese enhanced the potency of dopamine both in the presence and absence of GTP, but NaCl (100 mM) had no effect. Neither manganese nor GTP caused any change in the affinity or capacity of bovine striatal membranes for the tritiated agonists dopamine, apomorphine or ADTN. GPPNHP, a nonhydrolyzable analog of GTP, was also ineffective. However, in identical experiments using rat striatal membranes, 50 M GTP caused a decrease in affinity for all three tritiated agonists and this effect was observed both in the presence and absence of manganese (1 mM). In addition, binding capacities for [3H]dopamine and [3H]ADTN were doubled when manganese was present. In light of this and other reports that GTP inhibits tritiated agonist binding in rat striatum, it is suggested that the absence of such inhibition in bovine striatal membranes may reflect a fundamental difference between the two species with regard to their receptors for dopamine agonists.  相似文献   

3.
The guanine nucleotides GDP, GTP, and guanosine-5'-(beta, gamma-imido)triphosphate inhibit binding of opiates and opioid peptides to receptors solubilized from membranes of neuroblastoma X glioma NG108-15 hybrid cells. The inhibition reflects decreased affinity of receptors for opioid ligands. Whereas in membranes, only opioid agonist binding is sensitive to guanine nucleotide inhibition, both agonist and antagonist binding is reduced in the case of soluble receptors. Furthermore, soluble receptors are more sensitive to the effects of guanine nucleotides than are membrane-bound receptors. These observations are consistent with the suggestion that solubilized receptors may be complexes of an opiate binding protein and a guanine nucleotide-sensitive regulatory component.  相似文献   

4.
Binding of thyrotropin-releasing hormone (TRH) to specific receptors on membranes isolated from GH4C1 pituitary cells was inhibited by monovalent cations and guanyl nucleotides. NaCl and LiCl inhibited TRH binding by 70%, with half-maximal inhibition at 30 mM; RbCl and KCl inhibited only 10% at concentrations up to 150 mM. NaCl decreased both the apparent number and the affinity of TRH receptors and increased the rate of dissociation of TRH from both membrane and Triton X-100-solubilized receptors. Guanyl nucleotides inhibited TRH binding up to 80%, with guanyl-5'-yl imidodiphosphate (Gpp(NH)p) approximately GTP much greater than GDP approximately ATP greater than GMP. GTP and Gpp(NH)p exerted half-maximal effects at 0.3 microM and decreased receptor affinity to one-third of control but did not change receptor number. Gpp(NH)p accelerated the dissociation of TRH from membranes but not from solubilized receptors. The effects of NaCl were independent of temperature, while GTP and Gpp(NH)p were much more inhibitory at 22 degrees C (70%) than at 0 degrees C (10%). Inhibition by NaCl could be reversed by washing the membranes, and inhibition by GTP was reversed if membranes were chilled to 0 degrees C. The inhibitory effects of low concentrations of NaCl and Gpp(NH)p were additive. Neither monovalent cations nor GTP prevented the TRH-receptor complex from undergoing transformation from a state with rapid dissociation kinetics to a slower dissociating form. The results suggest that sodium ion regulates TRH binding by interacting with a site on the receptor, while guanyl nucleotides regulate TRH binding indirectly.  相似文献   

5.
Investigation of the properties of the binding of the radiolabelled antagonists (125I)-iodohydroxybenzylpindolol, (125I)-iodopindolol, and (125I)-iodocyanopindolol to beta-adrenergic receptors of L6 myoblast membranes revealed that guanine nucleotides caused a 2 to 4.5 fold increase in the apparent affinity of these antagonists. No significant effects of GTP were observed on the density of binding sites determined with each radioligand. GTP, GDP, and GMPPNP were of similar high affinity in producing this effect, while GMP was much less potent, and ATP was without effect. Under similar assay conditions GTP reduced the apparent binding affinity of the agonist isoproterenol for the beta-adrenergic receptors of L6 cells. The results indicate that, contrary to previous observations, guanine nucleotides affect not only the interactions of agonists with beta-adrenergic receptors, but also the interaction of antagonists with these adenylate cyclase-linked receptors.  相似文献   

6.
To investigate whether guanine nucleotides regulate interconversion of the two-state hepatic glucagon receptor we have utilized kinetic assays of glucagon binding to partially purified rat liver plasma membranes. Dissociation of glucagon at 30 degrees C exhibited biexponential character in either the absence or presence of GTP, indicating that the system previously seen in intact hepatocytes is independent of intracellular modulators. In each case the receptors underwent a time-dependent conversion from a low affinity to a high affinity state. However, GTP decreased the fraction of receptors in the high affinity state. The rank order for stabilizing the low affinity state was Gpp(NH)p greater than GTP greater than GDP much greater than GMP = no nucleotides. Data from competition binding assays with increasing concentrations of GTP allow calculation of equilibrium constants which are 3.32 nM for glucagon and receptor in the absence of GTP, 18.6 nM for glucagon and receptor in the presence of GTP, 1.55 microM for the association of receptor and GTP presumably linked to an N protein, and 8.86 microM for the association of the glucagon-receptor complex and GTP again presumably linked to an N protein, Glucagon binding to receptor is noncooperative in both the absence and presence of GTP, distinguishing this system from the beta-adrenergic system. With GTP, binding to the low affinity state is favored because of the relative affinities reported. Therefore, GTP regulates the activation by slowing the conversion of the receptor from a low affinity to high affinity form.  相似文献   

7.
GTP-binding regulatory proteins (G-proteins) were identified in chemosensory membranes from the channel catfish, Ictalurus punctatus. The common G-protein beta-subunit was identified by immunoblotting in both isolated olfactory cilia and purified taste plasma membranes. A cholera toxin substrate (Mr 45,000), corresponding to the G-protein that stimulates adenylate cyclase, was identified in both membranes. Both membranes also contained a single pertussis toxin substrate. In taste membranes, this component co-migrated with the alpha-subunit of the G-protein that inhibits adenylate cyclase. In olfactory cilia, the Mr 40,000 pertussis toxin substrate cross-reacted with antiserum to the common amino acid sequence of G-protein alpha-subunits, but did not cross-react with antiserum to the alpha-subunit of the G-protein from brain of unknown function. The interaction of G-proteins with chemosensory receptors was determined by monitoring receptor binding affinity in the presence of exogenous guanine nucleotides. L-Alanine and L-arginine bind with similar affinity to separate receptors in both olfactory and gustatory membranes from the catfish. GTP and a nonhydrolyzable analogue decreased the affinity of olfactory L-alanine and L-arginine receptors by about 1 order of magnitude. In contrast, the binding affinities of the corresponding taste receptors were unaffected. These results suggest that olfactory receptors are functionally coupled to G-proteins in a manner similar to some hormone and neurotransmitter receptors.  相似文献   

8.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

9.
In continuing studies on smooth microsomal and synaptic membranes from rat forebrain, we compared the binding properties of opiate receptors in these two discrete subcellular populations. Receptors in both preparations were saturable and stereospecific. Scatchard and Hill plots of [3H]naloxone binding to microsomes and synaptic membranes were similar to plots for crude membranes. Both synaptic membranes and smooth microsomes contained similar enrichments of low- and high-affinity [3H]naloxone binding sites. No change in the affinity of the receptors was observed. When [3H]D-ala2-D-leu5-enkephalin was used as ligand, microsomes possessed 60% fewer high-affinity sites than did synaptic membranes, and a large number of low-affinity sites. In competition binding experiments microsomal opiate receptors lacked the sensitivity to (guanyl-5'-yl)imidodiphosphate [Gpp(NH)p] shown by synaptic and crude membrane preparations. In this respect microsomal opiate receptors resembled membranes that were experimentally guanosine triphosphate (GTP)-uncoupled with N-ethylmaleimide (NEM). Agonist binding to microsomal and synaptic membrane opiate receptors was decreased by 100 mM NaCl. Like NEM-treated crude membranes, microsomal receptors were capable of differentiating agonist and antagonists in the presence of 100 mM NaCl. MnCl2 (50-100 microM) reversed the effects of 100 mM NaCl and 50 microM GTP on binding of the mu-specific agonist [3H]dihydromorphine in both membrane populations. Since microsomal receptors are unable to distinguish agonists from antagonists in the presence of Gpp(NH)p, they are a convenient source of guanine nucleotide-uncoupled opiate receptors.  相似文献   

10.
The neuropeptide bombesin acts on a variety of target cells to stimulate the processes of secretion and cell proliferation. In this study we determined whether bombesin receptors interact with known guanine nucleotide-binding proteins in four different cell types: GH4C1 pituitary cells, HIT pancreatic islet cells, Swiss 3T3 fibroblasts, and rat brain tissue. Maximal concentrations of nonhydrolyzable GTP analogs decreased agonist binding to bombesin receptors in membranes from all four sources. In GH4C1 and HIT cell membranes GTP analogs inhibited bombesin receptor binding with IC50 values of about 0.1 microM, whereas GDP analogs were approximately 10-fold less potent. In contrast, GMP and the nonhydrolyzable ATP analog adenylyl-imidodiphosphate had no effect at 100 microM. Equilibrium binding experiments in GH4C1 and HIT cell membranes indicated a single class of binding sites with a dissociation constant (Kd) for [125I-Tyr4]bombesin of 24.4 +/- 7.0 pM and a binding capacity of 176 +/- 15 fmol/mg protein. Guanine nucleotides decreased the apparent affinity of the receptors without significantly changing receptor number. Consistent with this observation, guanine nucleotides also increased the rate of ligand dissociation. Pretreatment of GH4C1 or HIT cells with either pertussis toxin (100 ng/ml) or cholera toxin (500 ng/ml) for 18 h did not affect agonist binding to membrane bombesin receptors, its regulation by guanine nucleotides, or bombesin stimulation of hormone release. Although pertussis toxin pretreatment has been reported to block bombesin stimulation of DNA synthesis in Swiss 3T3 cells, it did not alter the binding properties of bombesin receptors in Swiss 3T3 membranes or inhibit the rapid increase in intracellular [Ca2+] produced by bombesin in these cells. In summary, our results indicate that the bombesin receptor interacts with a guanine nucleotide-binding protein which exhibits a different toxin sensitivity from those which regulate adenylate cyclase as well as those which couple some receptors to phospholipases.  相似文献   

11.
cGMP influences guanine nucleotide binding to frog photoreceptor G-protein   总被引:2,自引:0,他引:2  
A rapid light-induced decrease in cGMP is thought to play a role in regulating the permeability or light sensitivity of photoreceptor membranes. Photo-excited rhodopsin activates a guanine nucleotide-binding protein (G-protein) by catalyzing the exchange of bound GDP for GTP. This G-protein X GTP complex activates the phosphodiesterase resulting in a decrease in cGMP concentration. We have observed two processes in vitro which may be relevant for the regulation of G-protein activation. First, we have found that free GDP binds to G-protein with an affinity similar to that of GTP. These two nucleotides appear to compete for a common site. Since G-protein X GDP does not activate phosphodiesterase, light-induced changes in the GTP/GDP ratio known to occur on illumination may serve to reduce G-protein activation and hence reduce phosphodiesterase activation. Second, addition of cGMP in the presence of equimolar GTP and GDP causes GTP binding to G-protein to be enhanced compared to GDP binding. This effect increases as the cGMP concentration is increased from 0.05 to 2 mM. Thus, light-induced decreases in cGMP concentration may also act as a feedback control in reducing G-protein activation. One or both of these processes may be involved in the desensitization (light adaptation) of rod photoreceptors.  相似文献   

12.
A protein that binds kainate with high affinity has been purified and cloned from frog brain (Rana pipiens) and has approximately 35% sequence homology with mammalian non-N-methyl-D-aspartate glutamate receptors, some of which have been shown to be ligand-gated ion channels. Frog brain membranes and membranes from Chinese hamster ovary (CHO) cells transfected with the cDNA coding for the frog kainate-binding protein (CHO-4 cells) bound kainate with essentially identical affinity (KD values of 1.9 and 2.1 nM, respectively). In both tissues, the affinity for kainate decreased 9-fold in the presence of 100 microM GTP gamma S (guanosine 5'-O-(3-thio)triphosphate). No specific kainate binding to nontransfected CHO cell membranes was observed. GTP gamma S and GDP were effective inhibitors of kainate binding, while cGMP and adenosine 5'-O-(3-thio)triphosphate had no effect in either frog brain membranes or CHO-4 membranes. Pretreatment of CHO-4 cell membranes with pertussis toxin led to a 34% decrease in kainate binding. Kainate increased the binding of [3H]5'-guanylyl imidodiphosphate by 61%, and the rate of GTP hydrolysis by up to 5-fold. These results indicate that the kainate receptor cloned from frog brain can interact functionally with a G protein present in CHO-4 cell membranes.  相似文献   

13.
The effects of Mg2+ or ethylenediaminetetraacetic acid (EDTA) on 125I-glucagon binding to rat liver plasma membranes have been characterized. In the absence of guanosine 5'-triphosphate (GTP), maximal binding of 125I-glucagon occurs in the absence of added Mg2+. Addition of EDTA or Mg2+ diminishes binding in a dose-dependent manner. In the presence of GTP, maximal binding occurs in the presence of 2.5 mM Mg2+ (EC50 = 0.3 mM) while EDTA or higher concentrations of Mg2+ diminish binding. Response to exogenous Mg2+ or EDTA depends on the concentration of Mg2+ in the membranes and may vary with the method used for membrane isolation. Solubilized 125I-glucagon-receptor complexes fractionate on gel filtration columns as high molecular weight, GTP-sensitive complexes in which receptors are coupled to regulatory proteins and lower molecular weight, GTP-insensitive complexes in which receptors are not coupled to other components of the adenylyl cyclase system. In the absence of GTP, 40 mM Mg2+ or 5 mM EDTA diminishes receptor affinity for hormone (from KD = 1.2 +/- 0.1 nM to KD = 2.6 +/- 0.3 nM) and the fraction of 125I-glucagon in high molecular weight receptor-Ns complexes without affecting site number (Bmax = 1.8 +/- 0.1 pmol/mg of protein). Thus, while GTP promotes disaggregation of receptor-Ns complexes, Mg2+ or EDTA diminishes the affinity with which these species bind hormone. In the presence of GTP, hormone binds to lower affinity (KD = 9.0 +/- 3.0 nM), low molecular weight receptors uncoupled from Ns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

15.
Previous studies have demonstrated high affinity 3H-dopamine binding sites on mammalian striatal membranes. These putative dopamine receptors of unknown physiological significance have been termed D-3 sites. Such studies have failed, however, to demonstrate high affinity 3H-dopamine binding to D-2 sites, which can be labeled by 3H-butyrophenones, and which represent the putative dopamine receptors most stronly implicated in the behavioral correlates of dopaminergic CNS activity. We now report that preincubation of membrane homogenates with Mg++ and inclusion of Mg++ (1–10mM) or other divalent metal cations during binding allows high affinity D-2 specific 3H-dopamine binding in rat striatal membranes, and that these ions also increase the Bmax of D-3 specific 3H-dopamine binding. GTP, GDP, and GppNHp can completely abolish all D-2 specific 3H-dopamine binding, while only a magnesium-dependent portion of D-3 sites appears to be GTP sensitive. These data are consistent with the hypothesis that the striatal D-2 receptor exists in two agonist affinity states whose interconversion is effected by guanine nucleotides and divalent metal cations. The GTP sensitive/magnesium dependent nature of 3H-dopamine binding to so-called D-3 sites suggests that some such sites may in fact represent a high agonist-affinity state of the D-1 adenylate cyclase stimulating dopamine receptor also found in this tissue.  相似文献   

16.
beta-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The beta-adrenergic agonist isoproterenol (10 microM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (approximately 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), isoproterenol increased cAMP formation to the same extent as that observed with AlF-4. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (approximately 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the 'turn-off' step for the adenylyl cyclase activation seen following beta-adrenergic stimulation of rat parotid glands.  相似文献   

17.
The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.  相似文献   

18.
The effects of castration and androgen-replacement on adrenergic receptors in membranes from the rat seminal vesicle were studied. Membranes from seminal vesicles showed saturable and high-affinity binding sites for the beta-adrenergic receptor antagonist, [3H]dihydroalprenolol ([3H]DHA), and the alpha 1-adrenergic receptor antagonist, [3H]prazosin. Castration markedly reduced beta-adrenergic receptors with decreasing the effect of GTP modulating the receptor-ligand affinity, suggesting defects in both the receptor per se and the guanine-nucleotides-regulating mechanism after castration. In contrast, castration increased alpha 1-adrenergic receptors and androgen-replacement reversed this change. The effects of GTP decreasing the alpha 1-receptor binding affinity to the radioligand were observed to a similar extent in the castrated and control membranes. These results demonstrate an inverse regulation by androgen on beta- and alpha 1-adrenergic receptors in membranes of the rat seminal vesicle.  相似文献   

19.
The affinity of many types of membrane-bound receptors coupled negatively to adenylate cyclase is regulated by divalent and monovalent cations and by guanine nucleotides (GTP). We used alpha 2-adrenoreceptors of human platelets as a model system to find out the effect of limited proteolysis with trypsin on the regulation of the alpha 2-adrenoreceptor-agonist interactions by GTP and Na+. We found that partial proteolysis of the membranes with trypsin for 3 min at 35 degrees C reduced specific [3H]yohimbine binding to platelet membranes to 40-50% of control. The following characteristics of the receptors remaining after proteolysis were similar to those of untreated membranes: affinity for the agonist and antagonists, stereospecificity, and kinetic properties. Trypsin also did not modify the ability of the receptor's change from a high to low affinity state in the presence of Na+. These findings suggested that the capability of the receptors to recognize the ligand and their ability to undergo a conformational change in the presence of the agonist were retained despite a reduction in the total number of receptors by trypsin. However, the modulation of the receptor--agonist interactions by GTP or Mg2+ was lost in the trypsin-pretreated membranes, while the modulation by Na+ remained intact. It is suggested that the loss of GTP or Mg2+ effects on receptor--ligand interactions produced by trypsin may be due to trypsin-induced disruption of subunits (alpha i, beta gamma) interactions of Gi protein.  相似文献   

20.
Treatment of rat reticulocyte plasma membranes with dicyclohexylcarbodiimide (DCCD) decreased the GTP-stimulated adenylate cyclase activity and reduced the number of receptors that bind the agonist with high affinity in the absence of GTP. Besides, the agonist's competition curve was shifted to the right, irrespective of the presence of guanyl nucleotides. The dissociation constant for the antagonist and the number of binding sites did not change. Preincubation of the DCCD-treated membranes with GMP in the presence of isoproterenol restored the regulation of the agonist's affinity by guanyl nucleotides; however, in this case the GTP-independent change in the agonist's affinity was retained. This suggests that one of the DCCD-modified components of the adenylate cyclase system is a regulatory protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号