首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.  相似文献   

3.
Tropomyosin (TM), a ubiquitous protein, is a component of the contractile apparatus of all cells. In nonmuscle cells, it is found in stress fibers, while in sarcomeric and nonsarcomeric muscle, it is a component of the thin filament. Several different TM isoforms specific for nonmuscle cells and different types of muscle cell have been described. As for other contractile proteins, it was assumed that smooth, striated, and nonmuscle isoforms were each encoded by different sets of genes. Through the use of S1 nuclease mapping, RNA blots, and 5' extension analyses, we showed that the rat alpha-TM gene, whose expression was until now considered to be restricted to muscle cells, generates many different tissue-specific isoforms. The promoter of the gene appears to be very similar to other housekeeping promoters in both its pattern of utilization, being active in most cell types, and its lack of any canonical sequence elements. The rat alpha-TM gene is split into at least 13 exons, 7 of which are alternatively spliced in a tissue-specific manner. This gene arrangement, which also includes two different 3' ends, generates a minimum of six different mRNAs each with the capacity to code for a different protein. These distinct TM isoforms are expressed specifically in nonmuscle and smooth and striated (cardiac and skeletal) muscle cells. The tissue-specific expression and developmental regulation of these isoforms is, therefore, produced by alternative mRNA processing. Moreover, structural and sequence comparisons among TM genes from different phyla suggest that alternative splicing is evolutionarily a very old event that played an important role in gene evolution and might have appeared concomitantly with or even before constitutive splicing.  相似文献   

4.
5.
6.
The neurexins are neuronal proteins that function as cell adhesion molecules during synaptogenesis and in intercellular signaling. Although mammalian genomes contain only three neurexin genes, thousands of neurexin isoforms may be expressed through the use of two alternative promoters and alternative splicing at up to five different positions in the pre-mRNA. To begin understanding how the expression of the neurexin genes is regulated, we have determined the complete nucleotide sequence of all three human neurexin genes: NRXN1, NRXN2, and NRXN3. Unexpectedly, two of these, NRXN1 ( approximately 1.1 Mb) and NRXN3 ( approximately 1.7 Mb), are among the largest known human genes. In addition, we have identified several conserved intronic sequence elements that may participate in the regulation of alternative splicing. The sequences of these genes provide insight into the mechanisms used to generate the diversity of neurexin protein isoforms and raise several interesting questions regarding the expression mechanism of large genes.  相似文献   

7.
The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.  相似文献   

8.
9.
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non-AUG codon, in addition to initiating at a downstream in-frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non-AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non-AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.  相似文献   

10.
Alternative splicing of introns is essential to ensure the complexity of mammalian genome functions. In particular, the generation of a high number of different isoforms by alternative splicing is an important characteristic of genes coding for signalling proteins such as mitogen activated protein kinases (MAPKs). This is thought to allow these proteins to transduce multiple stimuli in a highly regulated manner. Plant genes are also subjected to alternative splicing. Nevertheless, clear examples of the functional consequences of this phenomenon are still scarce in plants. MIK is a maize gene coding for a GCK-like MAP4K that can be activated by interaction with maize atypical receptor kinase (MARK), an atypical receptor kinase. Here we show that MIK is subjected to alternative splicing. Expression of MIK leads to, at least, 4 different mature mRNAs that accumulate with particular expression profiles during maize development. Our results show that the polypeptides encoded by the different MIK mRNAs display different kinase activity and are differentially activated by interaction with the MARK receptor. Two MIK isoforms display constitutive kinase activity, one isoform is inactive but can be activated by MARK, and the fourth MIK isoform is inactive and cannot be activated by MARK. Our results constitute a clear example of the biochemical consequences of alternative splicing in plants. The selective conservation during evolution of the intron–exon structure of the region coding for the regulator domain of MIK, as well as the maintenance in maize, rice and Arabidopsis of the alternative splicing of some of these introns, are strong indications of its functional importance.  相似文献   

11.
In the post-genomics era there has been an acceleration of understanding of cellular and organismal biology and this acceleration has moved the goalposts for proteomics. Higher eukaryotes use alternative promoters, alternative splicing, RNA editing and post-translational modification to produce multiple isoforms of proteins from single genes. Switching amongst these isoforms is a major mechanism for control of cellular function. At present fundamental limitations in sensitivity, in absolute quantitation of proteins and in the characterization of protein structure at functionally important levels strongly limit the applicability of proteomics to higher eukaryotes. Recent developments suggest that quantitative, top-down proteomics analyses of complete proteins at sub-attomole levels are necessary for physiologically relevant studies of higher eukaryotes. New proteomics technologies which will ensure the future of proteomics as an important technology in medicine and cellular biology of higher eukaryotes are becoming available.  相似文献   

12.
13.
14.
15.
16.
17.
The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.  相似文献   

18.
Tabuchi K  Südhof TC 《Genomics》2002,79(6):849-859
Neurexins are neuron-specific vertebrate proteins with hundreds of differentially spliced isoforms that may function in synapse organization. We now show that Drosophila melanogaster and Caenorhabditis elegans express a single gene encoding only an alpha-neurexin, whereas humans and mice express three genes, each of which encodes alpha- and beta-neurexins transcribed from separate promoters. The neurexin genes are very large (up to 1.62 Mb), with the neurexin-3 gene occupying almost 2% of human chromosome 14. Although invertebrate and vertebrate neurexins exhibit a high degree of evolutionary conservation, only vertebrate neurexins are subject to extensive alternative splicing that uses mechanisms ranging from strings of mini-exons to multiple alternative splice donor and acceptor sites. Consistent with their proposed role in synapse specification, neurexins thus have evolved from relatively simple genes in invertebrates to diversified genes in vertebrates with multiple promoters and extensive alternative splicing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号