首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated a novel method for the selective separation of beta-carotene isomers from a freeze-dried powder of the algae Dunaliella bardawil using supercritical fluid extraction. The separation method relies on the different dissolution rate of the 9Z and all-E isomers of beta-carotene in SC-CO(2). At first, the equilibrium solubility of the two isomers in SC-CO(2) was determined at the extraction conditions of 44.8 MPa and 40 degrees C. The solubility of the 9Z isomer was found to be nearly 4 times higher than that of the all-E isomer (1.92 x 10(-5) g all-E isomer/g CO(2) compared to 7.64 x 10(-5) g 9Z isomer/g CO(2)). When supercritical fluid extraction was applied to a carotenoid concentrate from the algae (29 wt% beta-carotene) or a freeze-dried powder of the algae (3.1% beta-carotene), a selective separation of the 9Z/all-E isomers of beta-carotene was obtained. Thirty-nine percent recovery of beta-carotene with 80% purity of 9Z isomer was achieved at the initial stages of extraction (40 mL CO(2)). The extraction rate of beta-carotene from the freeze-dried algae powder was slower than that from the carotenoid concentrate, resulting in a reduction in the recovery and purity of the 9Z isomer. This indicates that even at the initial stage of the extraction the internal mass resistance is significant. Isomer purity and recovery could be enhanced upon grinding of the algae powder.  相似文献   

2.
A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any structural differences in the protein when bound to the all-trans and 9-cis isomers, the structures of all-trans retinoic acid-ERABP and 9-cis retinoic acid ERABP were determined. Our results indicate that the all-trans isomer of retinoic acid adopts an 8-cis structure in the binding cavity with no concomitant conformational change in the protein. The structure of TTNPB-ERABP is also reported herein. To accommodate this all-trans analog, which cannot readily adopt a cis-like structure, alternative positioning of critical binding site side chains is required. Consequently, both protein and ligand adaption are observed in the formation of the various holo-proteins.  相似文献   

3.
1. Retinal isomers extracted from the acid-hydrolysate of cetyltrimethylammonium bromide-treated dark-adapted bacteriorhodopsin (bRD) were analyzed in a high performance liquid chromatograph (HPLC) system. The extract from bRD contains almost equal molar amounts of both 13-cis retinal and all-trans retinal isomers. The extent of isomerization and the yield of both isomers during the isolation process were investigated by the application of the same extraction procedure to artificial bacteriorhodopsin reconstituted with 13-cis retinal isomer (13-cis bacteriorhodopsin) and also to light-adapted bacteriorhodopsin (bRL) which has been shown to contain only the all-trans isomer (all-trans bacteriorhodopsin). 2. A reconstituted bacteriorhodopsin, which had been prepared from apo-bacteriorhodopsin and an equimolar mixture of both 13-cis retinal and all-trans retinal isomers, showed an absorption spectrum having the same maximum wavelength as that of bRD even at the beginning of the reconstitution process. 3. Analysis of the photosteady states of bRD at -190 degrees C revealed that it was composed of two different species, one having 13-cis retinal and the other having all-trans retinal isomers in approximately equal molar amounts. These two also gave their respective photoproducts. 4. From these results it can be concluded that bRD contains both 13-cis retinal and all-trans retinal isomers in nearly equal molar amounts as its chromophore.  相似文献   

4.
Cis-trans isomers of vitamin A and retinene in the rhodopsin system   总被引:28,自引:14,他引:14  
Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the isomerization can go further. The synthesis of rhodopsin in solution follows the course of a bimolecular reaction, as though one molecule of neoretinene b combines with one of opsin. The synthesis of isorhodopsin displays similar kinetics. The bleaching of rhodopsin, whether by chemical means or by exposure to yellow or orange (i.e., non-isomerizing) light, yields primarily or exclusively all-trans retinene. The same appears to be true of isorhodopsin. The process of bleaching is therefore intrinsically irreversible. The all-trans retinene which results must be isomerized to active configurations before rhodopsin or isorhodopsin can be regenerated. A cycle of isomerization is therefore an integral part of the rhodopsin system. The all-trans retinene which emerges from the bleaching of rhodopsin must be isomerized to neoretinene b before it can go back; or if first reduced to all-trans vitamin A, this must be isomerized to neovitamin Ab before it can regenerate rhodopsin. The retina obtains new supplies of the neo-b isomer: (a) by the isomerization of all-trans retinene in the eye by blue or violet light; (b) by exchanging all-trans vitamin A for new neovitamin Ab from the blood circulation; and (c) the eye tissues may contain enzymes which catalyze the isomerization of retinene and vitamin A in situ. When the all-trans retinene which results from bleaching rhodopsin in orange or yellow light is exposed to blue or violet light, its isomerization is accompanied by a fall in extinction and a shift of absorption spectrum about 5 mµ toward shorter wave lengths. This is a second photochemical step in the bleaching of rhodopsin. It converts the inactive, all-trans isomer of retinene into a mixture of isomers, from which mixtures of rhodopsin and isorhodopsin can be regenerated. Isorhodopsin, however, is an artefact. There is no evidence that it occurs in the retina; nor has isovitamin Aa or b yet been identified in vivo. In rhodopsin and isorhodopsin, the prosthetic groups appear to retain the cis configurations characteristic of their retinene precursors. In accord with this view, the β-bands in the absorption spectra of both pigments appear to be cis peaks. The conversion to the all-trans configuration occurs during the process of bleaching. The possibility is discussed that rhodopsin may represent a halochromic complex of a retinyl ion with opsin. The increased resonance associated with the ionic state of retinene might then be responsible both for the color of rhodopsin and for the tendency of retinene to assume the all-trans configuration on its release from the complex. A distinction must be made between the immediate precursor of rhodopsin, neovitamin Ab, and the vitamin A which must be fed in order that rhodopsin be synthesized in vivo. Since vitamin A isomerizes in the body, it is probable that any geometrical isomer can fulfill all the nutritional needs for this vitamin.  相似文献   

5.
In recent years, a number of studies have implicated the potent antioxidant property of astaxanthin in various experimental systems; however, these studies employed only the all-trans isomer. On the other hand, it has been reported that all-trans natural astaxanthin is readily isomerized to cis-trans, especially 9-cis and 13-cis isomers, under certain conditions by chemical analysis; however, the biological activities of the cis isomers of astaxanthin are little known. In the present study, we investigated the antioxidant activity of 9-cis and 13-cis astaxanthin compared to the all-trans isomer in vitro. In a stable radical DPPH scavenging activity test and in rat microsome and rabbit erythrocyte ghost membrane lipid peroxidation systems induced by AAPH and t-BuOOH, respectively, the results apparently showed that cis-astaxanthin, especially 9-cis astaxanthin, exhibited a higher antioxidant effect than the all-trans isomer. In addition, during polyunsaturated fatty acid (PUFA) oxidation, both DHA and linoleic acid hydroperoxides formation were markedly inhibited by astaxanthin isomers addition in the order 9-cis >13-cis >all-trans. Furthermore, 9-cis also exhibited the most effective inhibition of the generation of ROS induced by 6-hydroxydopamine (6-OHDA) in human neuroblastoma SH-SY5Y cells among the astaxanthin isomers, as well as on the degradation of collagen type II induced by DHA and linoleic acid hydroperoxides. The above-mentioned results suggest, for the first time, that cis isomer astaxanthin, especially 9-cis astaxanthin, has a much higher antioxidant potency than that of the all-trans isomer.  相似文献   

6.
Numerous studies on human prostate cancer cell lines indicate a role for arachidonic acid (AA) and its oxidative metabolites in prostate cancer proliferation. The metabolism of AA by either the cyclooxygenase (COX) or the lipoxygenase (LOX) pathways generates eicosanoids involved in tumor promotion, progression, and metastasis. In particular, products of the 5-LOX pathway (including 5-HETE and 5-oxo-EET) have been implicated as potential 'survival factors' that may confer escape after androgen withdrawal therapy through fatty-acid (i.e., AA) drive. Potent natural dietary antioxidant compounds such as lycopene and lycophyll, with tissue tropism for human prostate, have been shown to be effective in ameliorating generalized oxidative stress at the DNA level. Suppressing the 5-LOX axis pharmacologically is also a promising avenue for intervention in human patients. The recently recognized direct interaction of the astaxanthin-based soft-drug Cardax to human 5-LOX with molecular modeling, and the downregulation of both 5-HETE and 5-oxo-EET in vivo in a murine peritonitis model, suggest that other important dietary carotenoids may share this enzyme regulatory feature. In the current study, the acyclic tomato carotene lycopene (in all-trans and 5-cis isomeric configurations) and its natural dihydroxy analog lycophyll (also present in tomato fruit) were subjected to molecular modeling calculations in order to investigate their predicted binding interaction(s) with human 5-LOX. Two bioactive oxidative metabolites of lycopene (4-methyl-8-oxo-2,4,6-nonatrienal and 2,7,11-trimethyl-tetradecahexaene-1,14-dial) were also investigated. A homology model of 5-LOX was constructed using 8-LOX and 15-LOX structures as templates. The model was validated by calculating the binding energy of Cardax to 5-LOX, which was demonstrated to be in good agreement with the published experimental data. Blind docking calculations were carried out in order to explore the possible binding sites of the carotenoids on 5-LOX, followed by focused docking to more accurately calculate the predicted energy of binding. Lycopene and lycophyll were predicted to bind with high affinity in the superficial cleft at the interface of the beta-barrel and the catalytic domain of 5-LOX (the 'cleavage site'). Carotenoid binding at this cleavage site provides the structural rationale by which polyenic compounds could modify the 5-LOX enzymatic function via an allosteric mechanism, or by radical scavenging in proximity to the active center. In addition, the two bioactive metabolites of lycopene were predicted to bind to the catalytic site with high affinity--therefore suggesting potential direct competitive inhibition of 5-LOX activity that should be shared by both lycopene and lycophyll after in vivo supplementation, particularly in the case of the dial metabolite.  相似文献   

7.
Rhodopsin is formed by the condensation of opsin with a cis isomer of retinene, called neo-b. The bleaching of rhodopsin releases all-trans retinene which must be isomerized back to neo-b in order for rhodopsin to regenerate. Both retinene isomers are in equilibrium with the corresponding isomers of vitamin A, through the alcohol dehydrogenase system. An enzyme is found in cattle retinas and frog pigment layers which catalyzes the interconversion of all-trans and neo-b retinene. We call it "retinene isomerase." It is soluble in neutral phosphate buffer, and precipitates between 20 and 35 per cent saturation with ammonium sulfate. In the dark, the isomerase converts all-trans and neo-b retinene to an equilibrium mixture of 5 parts neo-b and 95 parts all-trans. With opsin present to trap neo-b, the isomerase catalyzes the synthesis of rhodopsin from all-trans retinene. This reaction, however, is too slow to account for dark adaptation. Retinene is isomerized by light, but too slowly to supply the retina with neo-b. In aqueous solution the pseudoequilibrium mixture contains about 15 per cent neo-b. When all-trans retinene is irradiated in the presence of isomerase, the rate of formation of neo-b is increased about 5 times, and the pseudoequilibrium shifted so that the mixture now contains about 32 per cent neo-b. The isomerase is specific for all-trans and neo-b retinene. It does not act on two other cis isomers of retinene, nor on all-trans or neo-b vitamin A. The role of the isomerase in vision appears to be as follows: in the light, as rhodopsin is bleached to opsin and all-trans retinene, the latter is in part converted to the neo-b isomer and stored in the pigment epithelium as neo-b vitamin A. During dark adaptation, the dominant process is the trapping by opsin of neo-b retinene supplied from stores of neo-b vitamin A, and the slow isomerase-catalyzed "dark" conversion of all-trans to neo-b retinene.  相似文献   

8.
We examined the reactivity of 3-alkyl group homologues of farnesyl diphosphate or isopentenyl diphosphate for medium-chain prenyl diphosphate synthases, hexaprenyl diphosphate- or heptaprenyl diphosphate synthase. But-3-enyl diphosphate, which lacks the methyl group at the 3-position of isopentenyl diphosphate, condensed only once with farnesyl diphosphate to give E-norgeranylgeranyl diphosphate by the action of either enzyme. However, norfarnesyl diphosphate was never accepted as an allylic substrate at all. 3-Ethylbut-3-enyl diphosphate also reacted with farnesyl diphosphate giving a mixture of (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl- and (all-E)-3,7-diethyl-11,15,19-trimethylicosa-2,6,10,14,18-pentaenyl diphosphates by hexaprenyl diphosphate synthase. On the other hand, heptaprenyl diphosphate synthase reaction of 3-ethylbut-3-enyl diphosphate with farnesyl diphosphate gave only (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl diphosphate.  相似文献   

9.
On the basis of data obtained by spectroscopic analysis and chromatography of retinal extracts, a consensus has been adopted that dark-adapted purple membrane (pm) contains 13-cis- and all-trans-retinal in equal amounts, whereas the light-adapted membrane contains all-trans-retinal only. We have developed an improved extraction technique which extracts up to 70% of the retinal in pm within 4 min. In the extracts from dark-adapted pm at room temperature, we consistently find 66-67% 13-cis-retinal and 33-34% all-trans-retinal, and more than 98.5% all-trans isomer in light-adapted samples. The spectrum obtained by reconstitution of bacterioopsin with 13-cis-retinal at 2 degrees C (to minimize isomerization) shows an absorbance maximum at 554 nm and agrees well with the spectrum for the 13-cis component calculated from the dark-adapted and light-adapted bR spectra with our extraction data. The ratio of 13-cis:all-trans isomer in dark-adapted pm is 2:1 and nearly constant between 0 and 38 degrees C but begins to decrease distinctly above 40 degrees C, and more rapidly near 70 degrees C, reaching 0.75 at 90 degrees C. The van't Hoff plot of the isomer ratio shows a nonlinear temperature dependence above 40 degrees C, indicating a more complex system than a simple thermal 13-cis/all-trans isomer equilibrium. We attribute the broadening, absorbance decrease, and blut shift of the visible absorption band with increasing temperature to the appearance of at least one and possibly two or three new chromophores which contain, mainly or exclusively, the all-trans isomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
When the fruitfly, Drosophila melanogaster, was reared on media deficient in carotenoids and retinoids, the level of 3-hydroxyretinal (the chromophore of fly rhodopsin) in the retina decreased to less than 1% compared with normal flies. The level of 3-hydroxyretinal increased markedly in flies that were given a diet supplemented with retinoids or carotenoids. The retinas of flies fed on all-trans retinoids and maintained in the dark predominantly contained the all-trans form of 3-hydroxyretinal, and showed no increase in the level of either the 11-cis isomer or the visual pigment. Subsequent illumination of the flies converted substantial amounts of all-trans 3-hydroxyretinal to its 11-cis isomer. The action spectrum of the conversion by illumination showed the optimum wavelength to be approximately 420 nm, which is significantly greater than the absorption maximum of free, all-trans 3-hydroxyretinal. Flies that were fed on carotenoids showed a rapid increase of the levels of 11-cis 3-hydroxyretinal and of visual pigment in the absence of light.  相似文献   

11.
The breakdown of lycopene in the presence of reactive oxygen and reactive nitrogen species has been studied in order to identify key in vitro intermediates. These compounds may in turn be produced as metabolites in the body and may have significant physiological properties, such as increased antioxidant capacity. We have studied the in vitro degradation of lycopene in solvent, in plasma and in low density lipoprotein, when challenged with freshly generated gaseous cigarette smoke or free radicals generated in situ by S-morpholinosydonimine at 37°C. The emphasis has been to establish the major intermediates and to compare the data with previous studies using different reactants. We have found that (13Z)-lycopene is the major intermediate in both cigarette smoke and S-morpholinosydonimine reactions (representing ≥60% of the converted (all-E)-lycopene at ~50% depletion). Additionally, (9Z)-lycopene and various (all-E) and (Z)-lycopene epoxides were predominant. Notably, (5Z)-lycopene appeared to be the most stable form of lycopene under the stated conditions. Previous theoretical studies of isomer thermodynamics and rotational energy barriers for carbon double bonds fully support the pattern of isomer production and stability. In contrast to β-carotene studies, nitro-derivatives of lycopene could not be detected. In conclusion, (Z)-lycopene production and (5Z)-lycopene stability may help explain elevated (Z)-lycopene in plasma over (Z)-lycopene content in lycopene-containing foods in the diet.  相似文献   

12.
A Maeda  Y Shichida  T Yoshizawa 《Biochemistry》1979,18(8):1449-1453
Squid rhodopsin was irradiated with orange light (greater than 530 nm) at various temperatures from -190 to 10 degrees C until a photo-steady-state mixture was formed. Then the chromophoric retinals were extracted from the photo-steady-state mixtures and their isomer composition was analyzed by high-performance liquid chromatography. In the case of photo-steady-state mixture formed at -85 degrees C, large peaks in the chromatogram were found at the positions of both 7-cis- and 13-cis-retinals. Each peak was further identified by synthesizing the pigments from these retinals with cattle opsin or apobacteriorhodopsin. Both 7-cis- and 13-cis-retinals were also extracted from a photo-steady-state mixture formed by irradiation at -40, at 0, or at 10 degrees C. These isomers were scarcely detected in a photo-steady-state mixture formed by irradiation at -190 degrees C, though 9-cis-retinal was found as a major constituent in this mixture. Irradiation of lumirhodopsin at -190 degrees C, however, produced 7-cis-retinal pigment. These findings suggest that bathorhodopsin may have a conformation to prevent the formation of 7-cis-retinal from the all-trans form and that this particular conformation may be relaxed by the conversion of bathorhodopsin to lumirhodopsin.  相似文献   

13.
The bacteriorhodopsin (bR) photocycle was followed by use of time-resolved Fourier-transform infrared (FTIR) spectroscopy as a function of temperature (15-85 degrees C) as the alpha(II) --> alpha(I) conformational transition occurs. The photocycle rate increases with increasing temperature, but its efficiency is found to be drastically reduced as the transition takes place. A large shift is observed in the all-trans left arrow over right arrow 13-cis equilibrium due to the increased stability of the 13-cis isomer in alpha(I) form. This, together with the increase in the rate of dark adaptation as the temperature increases, leads to a large increase in the 13-cis isomer concentration in bR in the alpha(I) form. The fact that 13-cis retinal has a much-reduced absorption cross-section and its inability to pump protons leads to an observed large reduction in the concentration of the observed photocycle intermediates, as well as the proton gradient at a given light intensity. These results suggest that nature might have selected the alpha(II) rather than the alpha(I) form as the helical conformation in bR to stabilize the all-trans retinal isomer that is a better light absorber and is capable of pumping protons.  相似文献   

14.
A simple and high-yielding method to convert natural all-cis PUFA derivatives to the corresponding all-trans geometrical isomers is described. The method is based on the thiyl radical-catalyzed cis-trans isomerization. The all-trans isomer of arachidonic acid was found to cause rabbit platelet aggregation at concentrations higher than 0.1 mM and inhibition of PAF-induced platelet aggregation in a concentration dependent manner with an IC(50) in the micromolar range.  相似文献   

15.
Recently, neutron diffraction experiments have revealed well-resolved and reversible changes in the protein conformation of bacteriorhodopsin (BR) between the light-adapted ground state and the M-intermediate of the proton pumping photocycle (Dencher, Dresselhaus, Zaccai and Büldt (1989) Proc. Natl. Acad. Sci. USA 86, 7876-7879). These changes are triggered by the light-induced isomerization of the chromophore retinal from the all-trans to the 13-cis configuration. Dark-adapted purple membranes contain a mixture of two pigment species with either the all-trans- or 13-cis-retinal isomer as chromophore. Employing a time-resolved neutron diffraction technique, no changes in protein conformation in the resolution regime of up to 7 A are observed during the transition between the two ground-state species 13-cis-BR and all-trans-BR. This is in line with the fact that the conversion of all-trans BR to 13-cis-BR involves an additional isomerization about the C15 = N Schiff's base bond, which in contrast to M formation minimizes retinal displacement and keeps the Schiff's base in the original protein environment. Furthermore, there is no indication for large-scale redistribution of water molecules in the purple membrane during light-dark adaptation.  相似文献   

16.
A reverse phase high performance liquid chromatography (HPLC) method has been developed for the separation of two geometric isomers of Acrivastine using crude reaction mixture. The resolution between two isomers was found more than 2.9. The geometric isomers have been isolated by preparative HPLC and characterized by spectroscopic techniques, such as NMR, infrared, and MS. The developed method has been validated for the determination of Z‐isomer in Acrivastine. The limit of detection and limit of quantification of the Z‐isomer were 0.05 and 0.2 μg/ml, respectively. The developed method is precise, linear, accurate, rugged and robust for its intended use. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Biochemical and immunological techniques were used to determine the emergence of interstitial retinol binding protein (IRBP), rhodopsin, and stored retinyl esters (all-trans and 11-cis) during retinal development in normal and rd mice. IRBP could be demonstrated at embryonic Day 17 (E17), corresponding to an early stage of inner segment development. Although all-trans retinyl esters were present earlier, 11-cis retinyl esters did not appear until postnatal Days 6-7 (P6-P7), corresponding to rod outer segment (ROS) disc formation. Rhodopsin was detected at the same developmental stage. The proportion of 11-cis retinyl esters reached a maximum of 40-50% at P15-P20. Thereafter, the proportion dropped, due to more rapid accumulation of the all-trans isomer. Rhodopsin and IRBP increased in parallel with ROS elongation up to P25, when the ROS had reached their mature lengths. The increases then continued up to P40-P50. In rd (retinal degeneration) mice, IRBP and rhodopsin were identical with the controls until P12, but then dropped as the photoreceptors degenerated. Synthesis and secretion of IRBP in vitro was less than 10% of the controls in rd retinas at P26, when only 4-5% of the photoreceptors survived. The quantities of retinyl esters (mainly stearate and palmitate in the ratio of 6:1, respectively) stored in dark-adapted mouse eyes progressively increased as the animals aged, representing 0.5 mole eq. of the rhodopsin at 8 months. Although retinyl esters (11-cis and all-trans) also accumulated in rd mouse eyes up to P12, little further increase occurred. At P93, the retinyl esters (0.01 nmole X eye-1) were only 4% of the controls at P91. A peak in the proportion of 11-cis isomer occurred at P10-P20, but it averaged only 15% of the total ester and declined to 5% at P93. These findings support the hypothesis that IRBP is synthesized by the rods and cones, and suggest that its synthesis and secretion are initiated when the photoreceptor inner segments start to differentiate. 11-cis Retinoids and rhodopsin do not appear until the outer segments start to form. It is suggested that in the rd mouse the absence of photoreceptors, perhaps coupled with lack of normal interphotoreceptor matrix, leads to a loss in the ability of the pigment epithelium to store retinyl esters.  相似文献   

18.
Composition of retinal isomers in three proton pumps (bacteriorhodopsin, archaerhodopsin-1, and archaerhodopsin-2) was determined by high performance liquid chromatography in their light-adapted and dark-adapted states. In the light-adapted state, more than 95% of the retinal in all three proton pumps were in the all-trans configuration. In the dark-adapted state, there were only two retinal isomers, all-trans and 13-cis, in the ratio of all-trans: 13-cis = 1:2 for bacteriorhodopsin, 1:1 for archaerhodopsin-1, and 3:1 for archaerhodopsin-2. The difference in the final isomer ratios in the dark-adapted bacteriorhodopsin and archaerhodopsin-2 was ascribed to the methionine-145 in bacteriorhodopsin. This is the only amino acid in the retinal pocket that is substituted by phenylalanine in archaerhodopsin-2. The bacteriorhodopsin point-mutated at this position to phenylalanine dramatically altered the final isomer ratio from 1:2 to 3:1 in the dark-adapted state. This point mutation also caused a 10 nm blue-shift of the adsorption spectrum, which is similar to the shift of archaerhodopsin-2 relative to the spectra of bacteriorhodopsin and archaerhodopsin-1.  相似文献   

19.
The structure of a new hydroxyketo fatty acid which occurs as a major monomer of Citrus limon fruit cutin has been determined by IR, NMR and MS. The monomer was shown to be a mixture of positional isomers of 16-hydroxyoxohexadecanoic acid with the 10-oxo isomer predominating. Substantial amounts of the 9-oxo isomer were present together with smaller quantities of the 8- and 7-isomers. The same compounds were also found to be important constituents of the fruit cutins of Physalis peruviana and Ribes nigrum.  相似文献   

20.
Y S Yang  P A Frey 《Biochemistry》1986,25(25):8173-8178
The dihydrolipoyl transacetylase component (E2) of the pyruvate dehydrogenase complex catalyzes the reaction of acetyl coenzyme A (acetyl-CoA) with dihydrolipoamide, producing coenzyme A and S-acetyldihydrolipoamide. The acetyl group is shown by experiments reported herein to be bonded to S8 in the enzymatic product. 1H NMR analysis of synthetic samples of both structural isomers of S-acetyl-S-(phenylmercurio)dihydrolipoamide enabled structural assignments to be made. Reaction of 8-S-acetyl-6-S-(phenylmercurio)dihydrolipoamide with 3-mercaptopropionic acid in chloroform produced 8-S-acetyldihydrolipoamide which contained a small amount (5%) of the 6-S isomer. Reaction of 6,8-di-S-acetyldihydrolipoamide with NH2OH produced a 4:1 mixture of 6-S-acetyldihydrolipoamide and the 8-S isomer. These compounds did not isomerize at significant rates in chloroform but rapidly isomerized to the equilibrium mixture in aqueous solution (Keq = 3.4). The second-order rate constants for the hydroxide-catalyzed isomerization were found to be kf = (1.15 +/- 0.07) X 10(6) M-1 X s-1 and kr = (3.36 +/- 0.20) X 10(5) M-1 X s-1 in the direction of the formation of the 8-S isomer. The enzymatic product was trapped by addition of phenylmercuric hydroxide within 15 s-30 min after starting the reaction. 1H NMR analysis of the products obtained at various times showed that the enzymatic product was 8-S-acetyldihydrolipoamide, which underwent progressive isomerization to the mixture of isomers within a few minutes. In the reaction of acetyl-CoA with dihydrolipoamide, the latter substrate reacts in place of enzyme-bound dihydrolipoyl moieties. Therefore, acetylation occurs at the 8-S position of bound lipoyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号