首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid A from the nitrogen-fixing bacterium Rhizobium leguminosarum displays many structural differences compared with lipid A of Escherichia coli. R. leguminosarum lipid A lacks the usual 1- and 4'-phosphate groups but is derivatized with a galacturonic acid substituent at position 4'. R. leguminosarum lipid A often contains an aminogluconic acid moiety in place of the proximal glucosamine 1-phosphate unit. Striking differences also exist in the secondary acyl chains attached to E. coli versus R. leguminosarum lipid A, specifically the presence of 27-hydroxyoctacosanoate and the absence of laurate and myristate in R. leguminosarum. Recently, we have found that lipid A isolated by pH 4.5 hydrolysis of R. leguminosarum cells is more heterogeneous than previously reported (Que, N. L. S., Basu, S. S., White, K. A., and Raetz, C. R. H. (1998) FASEB J. 12, A1284 (abstr.)). Lipid A species lacking the 3-O-linked beta-hydroxymyristoyl residue on the proximal unit contribute to this heterogeneity. We now describe a membrane-bound deacylase from R. leguminosarum that removes a single ester-linked beta-hydroxymyristoyl moiety from some lipid A precursors, including lipid X, lipid IVA, and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. The enzyme does not cleave E. coli lipid A or lipid A precursors containing an acyloxyacyl moiety on the distal glucosamine unit. The enzyme is not present in extracts of E. coli or Rhizobium meliloti, but it is readily demonstrable in membranes of Pseudomonas aeruginosa, which also contains a significant proportion of 3-O-deacylated lipid A species. Optimal reaction rates are seen between pH 5.5 and 6.5. The enzyme requires a nonionic detergent and divalent metal ions for activity. It cleaves the monosaccharide lipid X at about 5% the rate of lipid IVA and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. 1H NMR spectroscopy of the deacylase reaction product, generated with lipid IVA as the substrate, confirms unequivocally that the enzyme cleaves only the ester-linked beta-hydroxymyristoyl residue at the 3-position of the glucosamine disaccharide.  相似文献   

2.
Certain Escherichia coli mutants defective in phosphatidylglycerol biosynthesis accumulate novel glucosamine-derived phospholipids. We previously demonstrated that the simplest of these substance (lipid X) is a diacylglucosamine 1-phosphate bearing beta-hydroxymyristoyl groups at positions 2 and 3 (Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L., and Raetz, C. R. H. (1983) J. Biol. Chem. 258, 7379-7385). We now report the structural characterization of a triacylglucosamine 1-phosphate (designated lipid Y) that is also found in these mutants. Hydrolyzates of Y contain 2 mol of beta-hydroxymyristate and 1 mol of palmitate/mol of glucosamine. In the lipid, one of the beta-hydroxymyristates is amide-linked at position 2, while the two other fatty acyl groups are ester-linked. Fast atom bombardment mass spectrometry is used to confirm that Y is a monosaccharide derivative and that the molecular weight of Y as the free acid (C50H96NO13P) is 950.29. Analysis of Y by proton NMR spectroscopy at 200 MHz reveals that the anomeric configuration is alpha. Further, one of the esterified fatty acid residues is attached to the 3 OH of the sugar, while the second is linked to an OH moiety of a hydroxymyristate. The 4 and 6 OH groups of the sugar are unsubstituted, as in E. coli lipid X. To establish the precise location of each esterified fatty acyl residue, we subjected Y to a very mild alkaline hydrolysis in the presence of triethylamine. This resulted in the selective removal of a single hydroxymyristoyl group. The triethylamine-treated derivative (lipid Y) has a molecular weight of 723. NMR spectroscopy of Y shows that the 3 OH of the sugar is no longer substituted, while the beta OH of the remaining amide-linked hydroxymyristate is still esterified with palmitate. On the basis of these findings, we propose that lipid Y has the same fundamental structure as lipid X, except for the additional presence of a palmitoyl moiety on the N-linked hydroxymyristate. Presumably, lipid Y is synthesized from X by a selective acylation reaction.  相似文献   

3.
We have discovered an enzyme in the cytosol of Escherichia coli that generates lipid A disaccharides from monosaccharide precursors by the following route: 2,3-diacyl-GlcN-1-P + UDP-2,3-diacyl-GlcN---- 2,3-diacyl-GlcN (beta, 1----6) 2,3-diacyl-GlcN-1-P + UDP. Previous studies from our laboratory have documented the presence in vivo of the precursors 2,3-diacylglucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) (lipid X of E. coli) and UDP-2,3-diacylglucosamine (UDP-2,3-diacyl-GlcN) (Bulawa, C.E., and Raetz, C.R.H.J. Biol. Chem. 259, 4846-4851). Both substrates are novel glucosamine-derived phospholipids, acylated with beta-hydroxymyristoyl moieties, and they accumulate in E. coli mutants defective in the pgsB gene. Synthetic ADP-, GDP-, and CDP-2,3-diacylglucosamines are inefficient substrates compared to the naturally occurring UDP derivative. The free-acid form of the tetraacyldisaccharide 1-phosphate product (C68H129N2O20P) that is generated in vitro has Mr = 1325.74 as judged by fast atom bombardment mass spectrometry. Mild acid hydrolysis (0.1 M HCl for 30 min at 100 degrees C) liberates greater than 95% of the phosphate moiety as Pi. Detailed analysis by 1H and 13C NMR spectroscopy confirms the presence of a phosphate residue at position 1 of the disaccharide, an alpha-anomeric configuration at the reducing end, and a beta, 1----6 linkage between the two glucosamines. Importantly the disaccharide 1-phosphate synthase is missing in extracts of E. coli strains harboring the pgsB1 mutation, consistent with the massive accumulation of 2,3-diacyl-GlcN-1-P and UDP-2,3-diacyl-GlcN in vivo. The enzymatic reaction reported here represents a major biosynthetic route for the formation of lipid A disaccharides in E. coli and other Gram-negative bacteria. An in vitro system for the biosynthesis of lipid A disaccharides has not been described previously.  相似文献   

4.
The Gram-negative bacterium Escherichia coli has previously been shown to utilize two unique glucosamine (GlcN)-derived phospholipids in the biosynthesis of lipid A disaccharides (Bulawa, C.E., and Raetz, C. R.H. (1984) J. Biol. Chem. 259, 4846-4851; Ray, B. L., Painter, G.L., and Raetz, C.R.H. (1984) J. Biol. Chem. 259, 4852-4859. We now present evidence that these compounds, UDP-2,3-diacyl-GlcN and 2,3-diacyl-GlcN-1-phosphate (2,3-diacyl-GlcN-1-P), are generated in extracts of E. coli by fatty acylation of UDP-GlcNAc. The initial reaction is an O-acylation of the glucosamine ring, presumably of the 3-OH group, with (R)-beta-hydroxymyristate, followed by removal of the acetyl moiety, and further fatty acylation of the N atom with (R)-beta-hydroxymyristate to yield UDP-2,3-diacyl-GlcN. Hydrolysis of the pyrophosphate bridge in this molecule gives 2,3-diacyl-GlcN-1-P + UMP. In vivo pulse labeling with 32Pi supports this postulated pathway, since UDP-2,3-diacyl-GlcN is labeled prior to 2,3-diacyl-GlcN-1-P. UDP-glucosamine is inactive as a substrate in the initial acylation reaction. These acylations show an absolute specificity for fatty acyl moieties activated with acyl carrier protein. No reaction is detected with fatty acyl-CoA or free fatty acid. The fatty acylation of sugar nucleotides has not been reported previously in E. coli or any other organism.  相似文献   

5.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

6.
Certain phosphatidylglycerol-deficient mutants of Escherichia coli accumulate two fatty acylated monosaccharides related to lipid A biosynthesis that have been identified as 2,3-diacylglucosamine 1-phosphate (lipid X) and triacylglucosamine 1-phosphate (lipid Y) (Raetz, C. R. H. (1984) Rev. Infect. Dis. 6, 463-472). Lipid Y has the same structure as lipid X, except that it bears an additional palmitoyl moiety, esterified to the 3-OH of the N-linked R-3-hydroxymyristoyl residue. We now describe a membrane-associated system for the enzymatic conversion of lipid X to lipid Y. Removal of glycerophospholipids form such membranes by washing with cold ethanol abolishes the activity. The system can be reactivated by the addition of exogenous phospholipids dispersed as mixed micelles with Triton X-100. When reconstituted in this manner, the formation of lipid Y is strictly dependent upon a glycerophospholipid donor bearing a palmitoyl residue in the sn-1 position. The enzyme system does not utilize palmitoyl coenzyme A or palmitoyl acyl carrier protein. It does not catalyze efficient transfer of fatty acids differing from palmitate by only one carbon atom. In contrast, the enzyme has relatively little specificity for the polar headgroup of the phospholipid donor, and it also appears to utilize a disaccharide precursor of lipid A as an alternative palmitoyl acceptor. Since the in vitro synthesis of lipid Y proceeds with a high yield, we have isolated the product and verified its structure by 1H NMR spectroscopy and mass spectrometry. The transesterification reaction that converts lipid X to lipid Y may be a model for the enzymatic synthesis of other acyloxyacyl structures, known to occur in mature lipid A.  相似文献   

7.
Distinct from other spirochetes, cells of Leptospira interrogans contain orthologues of all the Escherichia coli lpx genes required for lipid A biosynthesis, but they synthesize a modified form of lipopolysaccharide that supposedly activates toll-like receptor 2 (TLR2) instead of TLR4. The recent determination of the L. interrogans lipid A structure revealed an unprecedented O-methylation of its 1-phosphate group (Que-Gewirth, N. L. S., Ribeiro, A. A., Kalb, S. R., Cotter, R. J., Bulach, D. M., Adler, B., Saint Girons, I., Werts, C., and Raetz, C. R. H. (2004) J. Biol. Chem. 279, 25420-25429). The enzymatic activity responsible for selective 1-phosphate methylation has not been previously explored. A membrane enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to the 1-phosphate moiety of E. coli Kdo2-[4'-(32)P]lipid A has now been discovered. The gene encoding this enzyme was identified based on the hypothesis that methylation of a phosphate group is chemically analogous to methylation of a carboxylate moiety at a membrane-water interface. Database searching revealed a candidate gene (renamed lmtA) in L. interrogans showing distant homology to the yeast isoprenylcysteine carboxyl methyltransferase, encoded by sterile-14, which methylates the a-type mating factor. Orthologues of lmtA were not present in E. coli, the lipid A of which normally lacks the 1-phosphomethyl group, or in other spirochetes, which do not synthesize lipid A. Expression of the lmtA gene behind the lac promoter on a low copy plasmid resulted in the appearance of SAM-dependent methyltransferase activity in E. coli inner membranes and methylation of about 30% of the endogenous E. coli lipid A. Inactivation of the ABC transporter MsbA did not inhibit methylation of newly synthesized lipid A. Methylated E. coli lipid A was analyzed by mass spectrometry and NMR spectroscopy to confirm the location of the phosphomethyl group at the 1-position. In human cells, engineered to express the individual TLR subtypes, 1-phosphomethyl-lipid A purified from lmtA-expressing E. coli potently activated TLR4 but not TLR2.  相似文献   

8.
The monosaccharide lipid A precursor, N2,O3-diacylglucosamine 1-phosphate (Escherichia coli lipid X), has been shown previously to be a potent B-lymphocyte mitogen. We now report that lipid X interacts with macrophages, stimulating turnover of phosphatidylinositol, deacylation of phospholipids, and release of arachidonic acid. In addition, the monosaccharide lipid X, the incomplete lipid A disaccharides found in KDO-deficient mutants, and crude free lipid A by itself activate protein kinase C isolated from RAW 264.7 macrophages. This activation is augmented by diglyceride, a product of phosphatidylinositol turnover. Like the lipid X-induced mitogenesis of B-lymphocytes, lipid X activation of macrophages and the cell-free activation of protein kinase by lipid X require the presence of the O-linked hydroxymyristoyl residue at position 3. We suggest, therefore, that some of the biological effects of lipid A may be mediated by its interaction with protein kinase C.  相似文献   

9.
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps.  相似文献   

10.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

11.
The chemical structures of six lipid A species (A, B, C, D-1, D-2, and E) purified from Rhizobium etli CE3 were investigated by one- and two-dimensional NMR spectroscopy. The R. etli lipid A subtypes each contain an unusual acyloxyacyl residue at position 2' as part of a conserved distal glucosamine moiety but differ in their proximal units. All R. etli lipid A species lack phosphate groups. However, they are derivatized with an alpha-linked galacturonic acid group at position 4', as shown by nuclear Overhauser effect spectroscopy. Component B, which had been not been reported in previous studies, features a beta, 1'-6 linked disaccharide of glucosamine acylated at positions 2, 3, 2', and 3' in a pattern that is typical of lipid A found in other Gram-negative bacteria. D-1 contains an acylated aminogluconate unit in place of the proximal glucosamine residue of B. C and E lack ester-linked beta-hydroxyacyl chains at position 3, as judged by their H-3 chemical shifts, and may be synthesized from B and D-1, respectively, by the R. etli 3-O-deacylase. D-2 is an isomer of D-1 that forms nonenzymatically by acyl chain migration. A may be an elimination product derived from D-1 during hydrolysis at 100 degrees C (pH 4.5), a step needed to release lipid A from lipopolysaccharide. Based on these findings, we propose a biosynthetic scheme for R. etli lipid A in which B is generated first by a variation of the E. coli pathway. The aminogluconate unit of D-1 could then be made from B by enzymatic oxidation of the proximal glucosamine. As predicted by our hypothesis, enzyme(s) can be demonstrated in extracts of R. etli that convert (14)C-labeled B to D-1.  相似文献   

12.
Lipid A of Rhizobium etli CE3 differs dramatically from that of other Gram-negative bacteria. Key features include the presence of an unusual C28 acyl chain, a galacturonic acid moiety at position 4', and an acylated aminogluconate unit in place of the proximal glucosamine. In addition, R. etli lipid A is reported to lack phosphate and acyloxyacyl residues. Most of these remarkable structural claims are consistent with our recent enzymatic studies. However, the proposed R. etli lipid A structure is inconsistent with the ability of the precursor (3-deoxy-D-manno-octulosonic acid)(2)-4'-(32)P-lipid IV(A) to accept a C28 chain in vitro (Brozek, K. A., Carlson, R. W., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32126-32136). To re-evaluate the structure, CE3 lipid A was isolated by new chromatographic procedures. CE3 lipid A is now resolved into six related components. Aminogluconate is present in D-1, D-2, and E, whereas B and C contain the typical glucosamine disaccharide seen in lipid A of most other bacteria. All the components possess a peculiar acyloxyacyl moiety at position 2', which includes the ester-linked C28 chain. As judged by mass spectrometry, the distal glucosamine units of A through E are the same, but the proximal units are variable. As described in the accompanying article (Que, N. L. S., Ribeiro, A. A., and Raetz, C. R. H. (2000) J. Biol. Chem. 275, 28017-28027), the discovery of component B suggests a plausible enzymatic pathway for the biosynthesis of the aminogluconate residue found in species D-1, D-2, and E of R. etli lipid A. We suggest that the unusual lipid A species of R. etli might be essential during symbiosis with leguminous host plants.  相似文献   

13.
Two-thirds of the lipid A in wild-type Escherichia coli K12 is a hexa-acylated disaccharide of glucosamine in which monophosphate groups are attached at positions 1 and 4'. The remaining lipid A contains a monophosphate substituent at position 4' and a pyrophosphate moiety at position 1. The biosynthesis of the 1-pyrophosphate unit is unknown. Its presence is associated with lipid A translocation to the outer membrane (Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C., and Raetz, C. R. H. (1998) J. Biol. Chem. 273, 12466-12475). To determine if a phosphatase regulates the amount of the lipid A 1-pyrophosphate, we grew cells in broth containing nonspecific phosphatase inhibitors. Na2WO4 and sodium fluoride increased the relative amount of the 1-pyrophosphate slightly. Remarkably, NH4VO3-treated cells generated almost no 1-pyrophosphate, but made six major new lipid A derivatives (EV1 to EV6). Matrix-assisted laser desorption ionization/time of flight mass spectrometry of purified EV1 to EV6 indicated that these compounds were lipid A species substituted singly or in combination with palmitoyl, phosphoethanolamine, and/or aminodeoxypentose residues. The aminodeoxypentose residue was released by incubation in chloroform/methanol (4:1, v/v) at 25 degrees C, and was characterized by 1H NMR spectroscopy. The chemical shifts and vicinal coupling constants of the two anomers of the aminodeoxypentose released from EV3 closely resembled those of synthetic 4-amino-4-deoxy-L-arabinose. NH4VO3-induced lipid A modification did not require the PhoP/PhoQ two-component regulatory system, and also occurred in E. coli msbB or htrB mutants. The lipid A variants that accumulate in NH4VO3-treated E. coli K12 are the same as many of those normally found in untreated Salmonella typhimurium and Salmonella minnesota, demonstrating that E. coli K12 has latent enzyme systems for synthesizing these important derivatives.  相似文献   

14.
The lipid A anchor of Francisella tularensis lipopolysaccharide (LPS) lacks both phosphate groups present in Escherichia coli lipid A. Membranes of Francisella novicida (an environmental strain related to F. tularensis) contain enzymes that dephosphorylate lipid A and its precursors at the 1- and 4'-positions. We now report the cloning and characterization of a membrane-bound phosphatase of F. novicida that selectively dephosphorylates the 1-position. By transferring an F. novicida genomic DNA library into E. coli and selecting for low level polymyxin resistance, we isolated FnlpxE as the structural gene for the 1-phosphatase, an inner membrane enzyme of 239 amino acid residues. Expression of FnlpxE in a heptose-deficient mutant of E. coli caused massive accumulation of a previously uncharacterized LPS molecule, identified by mass spectrometry as 1-dephospho-Kdo2-lipid A. The predicted periplasmic orientation of the FnLpxE active site suggested that LPS export might be required for 1-dephosphorylation of lipid A. LPS and phospholipid export depend on the activity of MsbA, an essential inner membrane ABC transporter. Expression of FnlpxE in the msbA temperature-sensitive E. coli mutant WD2 resulted in 90% 1-dephosphorylation of lipid A at the permissive temperature (30 degrees C). However, the 1-phosphate group of newly synthesized lipid A was not cleaved at the nonpermissive temperature (44 degrees C). Our findings provide the first direct evidence that lipid A 1-dephosphorylation catalyzed by LpxE occurs on the periplasmic surface of the inner membrane.  相似文献   

15.
Chlamydia trachomatis lipid A is unusual in that it is acylated with myristoyl chains at the glucosamine 3 and 3' positions. We have cloned and expressed the gene encoding UDP-N-acetylglucosamine 3-O-acyltransferase of C. trachomatis (CtlpxA), the first enzyme of lipid A biosynthesis. C. trachomatis LpxA displays approximately 20-fold selectivity for myristoyl-ACP over R/S-3-hydroxymyristoyl-ACP under standard assay conditions, consistent with the proposed structure of C. trachomatis lipid A. CtLpxA is the first reported UDP-N-acetylglucosamine acyltransferase that prefers a non-hydroxylated acyl-ACP to a hydroxyacyl-ACP. When CtlpxA was expressed in RO138, a temperature-sensitive lpxA mutant of Escherichia coli, five new hybrid lipid A species were made in vivo after 2 h at 42 degrees C, in place of Escherichia coli lipid A. These compounds were purified and analyzed by matrix-assisted laser desorption ionization/time of flight mass spectrometry. In each case, a myristoyl chain replaced one or both of the ester linked 3-hydroxymyristoyl residues of E. coli lipid A. With prolonged growth at 42 degrees C, all the ester-linked 3-hydroxymyristoyl residues were replaced with myristate chains. Re-engineering the structure of E. coli lipid A should facilitate the microbiological production of novel agonists or antagonists of the innate immunity receptor TLR-4, with possible uses as adjuvants or anti-inflammatory agents.  相似文献   

16.
Six DA  Carty SM  Guan Z  Raetz CR 《Biochemistry》2008,47(33):8623-8637
Escherichia coli lipid A is a hexaacylated disaccharide of glucosamine with secondary laurate and myristate chains on the distal unit. Hexaacylated lipid A is a potent agonist of human Toll-like receptor 4, whereas its tetra- and pentaacylated precursors are antagonists. The inner membrane enzyme LpxL transfers laurate from lauroyl-acyl carrier protein to the 2'- R-3-hydroxymyristate moiety of the tetraacylated lipid A precursor Kdo 2-lipid IV A. LpxL has now been overexpressed, solubilized with n-dodecyl beta- d-maltopyranoside (DDM), and purified to homogeneity. LpxL migration on a gel filtration column is consistent with a molecular mass of 80 kDa, suggestive of an LpxL monomer (36 kDa) embedded in a DDM micelle. Mass spectrometry showed that deformylated LpxL was the predominant species, noncovalently bound to as many as 12 DDM molecules. Purified LpxL catalyzed not only the formation in vitro of Kdo 2-(lauroyl)-lipid IV A but also a slow second acylation, generating Kdo 2-(dilauroyl)-lipid IV A. Consistent with the Kdo dependence of crude LpxL in membranes, Kdo 2-lipid IV A is preferred 6000-fold over lipid IV A by the pure enzyme. Sequence comparisons suggest that LpxL shares distant homology with the glycerol-3-phosphate acyltransferase (GPAT) family, including a putative catalytic dyad located in a conserved H(X) 4D/E motif. Mutation of H132 or E137 to alanine reduces specific activity by over 3 orders of magnitude. Like many GPATs, LpxL can also utilize acyl-CoA as an alternative acyl donor, albeit at a slower rate. Our results show that the acyltransferases that generate the secondary acyl chains of lipid A are members of the GPAT family and set the stage for structural studies.  相似文献   

17.
Structural heterogeneity regarding local Shwartzman activity of lipid A   总被引:2,自引:0,他引:2  
The relation of chemical structure to local Shwartzman activity of lipid A preparations purified by thin-layer chromatography from five bacterial strains was examined. Two lipid A fractions from E. coli F515--Ec-A2 and Ec-A3--exhibited strong activity, similar to that of previous synthetic E. coli-type lipid A (compound 506 or LA-15-PP). The Ec-A3 fraction contained a component that appeared to be structurally identical to compound 506, and the main component of Ec-A2 fraction was structurally similar to compound 506 except that it carried a 3-hydroxytetradecanoyl group at the C-3' position of the backbone in place of a 3-tetradecanoyloxytetradecanoyl group. Free lipid A (12 C) and purified lipid A fractions, Ec-A2 (12 C) and Ec-A3 (12 C), respectively, obtained from bacteria grown at 12 C, exhibited activity comparable to Ec-A2 or Ec-A3. In these preparations, a large part of the 3-dodecanoyloxytetradecanoyl group might be replaced by 3-hexadecenoyloxytetradecanoyl group. Salmonella minnesota R595 free lipid A also contained at least two active lipid A components as seen in E. coli lipid A, but the third component corresponding to the synthetic Salmonella-type lipid A (compound 516 or LA-16-PP) exhibited low activity. A lipid A fraction, Cv-A4 from Chromobacterium violaceum IFO 12614, which was proposed to have two acyloxyacyl groups at the C-2 and C-2' positions with other acyl groups, exhibited weaker activity than the free lipid A or LPS. The purified lipid A fractions from Pseudomonas diminuta JCM 2788 and Pseudomonas vesicularis JCM 1477 contained an unusual backbone with 2,3-diamino-2,3-dideoxy-D-glucose disaccharide phosphomonoester, and these lipid A (Pd-A3 and Pv-A3) exhibited strong activity comparable to the E. coli lipid A. Thus, the present results show that the local Shwartzman reaction can be expressed by partly different lipid A structures in both hydrophilic backbone and fatty acyl residues; when they have the same backbone the potency varies markedly depending on the structure of the acyl residues.  相似文献   

18.
A monosaccharide precursor of Escherichia coli lipid A, designated lipid X, which is a diacylglucosamine 1-phosphate with beta-hydroxymyristoyl groups at positions 2 and 3, was shown to have the ability to induce the production of tumor necrosis factor (TNF)-like tumor-cytotoxic factor by a murine macrophage-like cell line, J774.1. This cytotoxic factor was released from J774.1 cells grown in the presence of lipid X and related compounds, and it was assayed as to its lytic activity against [3H]thymidine-labeled L929 cells. Dose-response studies revealed that lipid X induced the production of smaller amounts of the tumor-cytotoxic factor than LPS at low concentrations, but it induced that of considerable amounts at and over 1 microgram/ml. Elimination of 1-phosphate or 3-O-beta-hydroxymyristoyl group from lipid X completely prevented the induction of producing this factor by the macrophages. Therefore, it is suggested that both 1-phosphate and 3-O-beta-hydroxymyristoyl groups are essential for the biologic activity of lipid X, as to the induction of the tumor-cytotoxic factor production in the macrophages.  相似文献   

19.
Lipid X, a monosaccharide precursor of the lipid A component of LPS, has been found to antagonize LPS-induced priming of human neutrophils in a manner consistent with competitive inhibition. In this investigation, the inhibition of neutrophil priming by lipid A analogs was found to be specific for LPS-induced priming. Priming of neutrophils by TNF, IL-8, and C5a were all unaffected by increasing concentrations of 3-aza-lipid X-4-phosphate (compound 3), a monosaccharide LPS-antagonist. Unlike lipid X, the pattern of antagonism exhibited by some monosaccharide LPS-antagonists was noncompetitive-like. The relationship between the chemical structure and inhibition pattern was found to be complex and not simply related to the type of acyl linkage at the C-3 position of the glucosamine backbone. Lipid A analogs were found to antagonize calcium ionophore A23187-stimulated leukotriene B4 (LTB4) production from LPS-primed neutrophils in a pattern of inhibition qualitatively similar to that seen with FMLP-stimulated O2- production. Resting and FMLP-stimulated (peak) cytosolic-free calcium levels did not differ significantly between unprimed and LPS-primed neutrophils, (p = 0.67 and p = 0.97, respectively). Furthermore, antagonism of LPS-mediated priming by 3-aza-lipid X-4-phosphate (compound 3) could not be explained by changes in intracellular calcium flux despite marked inhibition of O2- production (p less than 0.0001). Thus, lipid A analogs antagonize only LPS-induced priming and the pattern of inhibition is dependent on the chemical structure. Inhibition of LPS-induced priming by lipid A analogs may involve an early step in the signal transduction pathway common to both O2- and LTB4 generation, but independent of intracellular calcium concentration.  相似文献   

20.
LpxA of Escherichia coli catalyzes the acylation of the glucosamine 3-OH group of UDP-GlcNAc, using R-3-hydroxymyristoyl-acyl carrier protein (ACP) as the donor substrate. We now demonstrate that LpxA in cell extracts of Mesorhizobium loti and Leptospira interrogans, which synthesize lipid A molecules containing 2,3-diamino-2,3-dideoxy-d-glucopyranose (GlcN3N) units in place of glucosamine, do not acylate UDP-GlcNAc. Instead, these LpxA acyltransferases require a UDP-Glc-NAc derivative (designated UDP 2-acetamido-3-amino-2,3-dideoxy-alpha-d-glucopyranose or UDP-GlcNAc3N), characterized in the preceding paper, in which an amine replaces the glucosamine 3-OH group. L. interrogans LpxA furthermore displays absolute selectivity for 3-hydroxylauroyl-ACP as the donor, whereas M. loti LpxA functions almost equally well with 10-, 12-, and 14-carbon 3-hydroxyacyl-ACPs. The substrate selectivity of L. interrogans LpxA is consistent with the structure of L. interrogans lipid A. The mechanism of L. interrogans LpxA appears to be similar to that of E. coli LpxA, given that the essential His(125) residue of E. coli LpxA is conserved and is also required for acyltransferase activity in L. interrogans. Acidithiobacillus ferrooxidans (an organism that makes lipid A molecules containing both GlcN and GlcN3N) has an ortholog of LpxA that is selective for UDP-GlcNAc3N, but the enzyme also catalyzes the acylation of UDP-GlcNAc at a slow rate. E. coli LpxA acylates UDP-GlcNAc and UDP-GlcNAc3N at comparable rates in vitro. However, UDP-GlcNAc3N is not synthesized in vivo, because E. coli lacks gnnA and gnnB. When the latter are supplied together with A. ferrooxidans lpxA, E. coli incorporates a significant amount of GlcN3N into its lipid A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号