首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in genes of DNA polymerases or corrective 3′ → 5′-exonucleases lead to a decrease in the fidelity of DNA biosynthesis throughout the genome, which is accompanied by an increase in the probability of mutagenesis and carcinogenesis. In the present work, activities of 3′ → 5′-exonucleases and DNA polymerases are studied in extracts of rodents and human normal and cancer cells and, for the first time, their integral ratios are measured to elucidate the role of correcting exonucleases in carcinogenesis. Thus, in experiments on cells growing in culture, it has been found that in adult human dermal fibroblasts the value of ratio of activity of 3′ → 5′-exonucleases to the DNA polymerase activity (3′-exo/pol) exceeds this ratio for HeLa cells. A similar situation is also observed in a comparison of normal rat embryo fibroblasts and Syrian hamster A238 transformed fibroblasts. Experiments with extracts of the cells some organs of healthy rats of different ages have shown that in norm the proliferating cells are characterized by higher activities of 3′ → 5′-exonucleases and higher 3′-exo/pol values than in quiescent cells. A comparison of these data allows us to conlude that a disturbance in the functions of corrective 3′ → 5′-exonucleases occurs in pathologically growing cancer cells.  相似文献   

2.
The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites involving 1-nucleotide incorporation, named single nucleotide (SN)-BER, was observed with mitochondrial and nuclear extracts. During SN-BER, the 5'-phosphodeoxyribose (dRP) moiety, generated by AP-endonuclease (APE1), is removed by the lyase activity of DNA polymerase gamma (pol gamma) and polymerase beta in the mitochondria and nucleus, respectively. However, the repair of oxidized deoxyribose fragments at the 5' terminus after strand break would require 5'-exo/endonuclease activity that is provided by the flap endonuclease (FEN-1) in the nucleus, resulting in multinucleotide repair patch (long patch (LP)-BER). Here we show the presence of a 5'-exo/endonuclease in the mitochondrial extracts of mouse and human cells that is involved in the repair of a lyase-resistant AP site analog via multinucleotide incorporation, upstream and downstream to the lesion site. We conclude that LP-BER also occurs in the mitochondria requiring the 5'-exo/endonuclease and pol gamma with 3'-exonuclease activity. Although a FEN-1 antibody cross-reacting species was detected in the mitochondria, it was absent in the LP-BER-proficient APE1 immunocomplex isolated from the mitochondrial extract that contains APE1, pol gamma, and DNA ligase 3. The LP-BER activity was marginally affected in FEN-1-depleted mitochondrial extracts, further supporting the involvement of an unidentified 5'-exo/endonuclease in mitochondrial LP-BER.  相似文献   

3.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

4.
Werner syndrome (WS) is an inherited disorder characterized by premature aging and genomic instability. The protein encoded by the WS gene, WRN, possesses intrinsic 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities. WRN helicase resolves alternate DNA structures including tetraplex and triplex DNA, and Holliday junctions. Thus, one function of WRN may be to unwind secondary structures that impede cellular DNA transactions. We report here that hairpin and G'2 bimolecular tetraplex structures of the fragile X expanded sequence, d(CGG)(n), effectively impede synthesis by three eukaryotic replicative DNA polymerases (pol): pol alpha, pol delta, and pol epsilon. The constraints imposed on pol delta-catalyzed synthesis are relieved, however, by WRN; WRN facilitates pol delta to traverse these template secondary structures to synthesize full-length DNA products. The alleviatory effect of WRN is limited to pol delta; neither pol alpha nor pol epsilon can traverse template d(CGG)(n) hairpin and tetraplex structures in the presence of WRN. Alleviation of pausing by pol delta is observed with Escherichia coli RecQ but not with UvrD helicase, suggesting a concerted action of RecQ helicases and pol delta. Our findings suggest a possible role of WRN in rescuing pol delta-mediated replication at forks stalled by unusual DNA secondary structures.  相似文献   

5.
T Uemori  Y Ishino  H Doi    I Kato 《Journal of bacteriology》1995,177(8):2164-2177
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

6.
Our own and literary data about antimutagenic role of autonomous 3'-->5'-exonucleases (AE) are analyzed. AE are not bound covalently to DNA polymerases but often involved in replicative complexes. Intracellular overproduction of AE in bacteria is accompanied with the sharp suppression of mutagenesis, whereas the inactivation of AE in bacteria and higher fungi results in the increase of mutation rates by 2-3 orders of magnitude. The addition of AE in biologically meaningful concentrations to DNA polymerases elevates substantially the accuracy of their work in vitro. In these cases, the reverse mutation rates were measured in the DNA from phage (X174 amber 3, whereas the direct mutation rates--in the DNA from phage M13mp2, both being used as primer-templates for DNA synthesis and then transfected into spheroplasts of Escherichia coli. The accuracy of action of nuclease-free DNA polymerases alpha and beta are shown to raise in the presence of AE by 2-3 orders, the accuracy of moderately processive DNA polymerase I--by 2 orders, the accuracy of highly processive DNA polymerase delta--by 5-10 times, though the latter 2 polymerases display and their own 3'-->5'-exonucleolytic activity. AE, involved in the multienzyme DNA polymerase complexes, augment the accuracy of complexes action by 5-10 times. The model of "external" corrective role of AE in DNA biosynthesis is proposed. Study of 30 objects from all 3 kingdoms of live beings (from archae- and eubacteria to mammalia including human) has shown that AE account, as minimum, from 30 to 90% of the total cellular 3'-->5'-exonucleolytic activity. So AE increase essentially the intracellular ratio of values of 3'-->5'-exonuclease to DNA polymerase activities in the very various representatives from a phylogenetic tree that results always in the augmentation of the accuracy of DNA biosynthesis.  相似文献   

7.
Vitamin B(6) compounds such as pyridoxal 5(')-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), which reportedly have anti-angiogenic and anti-cancer effects, were thought to be inhibitors of some types of eukaryotic DNA polymerases. PL moderately inhibited only the activities of calf DNA polymerase alpha (pol alpha), while PN and PM had no inhibitory effects on any of the polymerases tested. On the other hand, PLP, a phosphated form of PL, was potentially a strong inhibitor of pol alpha and epsilon from phylogenetic-wide organisms including mammals, fish, insects, plants, and protists. PLP did not suppress the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I and Taq DNA polymerase, or DNA-metabolic enzymes such as deoxyribonuclease I. For pol alpha and epsilon, PLP acted non-competitively with the DNA template-primer and competitively with the nucleotide substrate. Since PL was converted to PLP in vivo after being incorporated into human cancer cells, the anti-angiogenic and anti-cancer effects caused by PL must have been caused by the inhibition of pol alpha and epsilon activities after conversion to PLP.  相似文献   

8.
9.
The 3' --> 5'-exonucleases process DNA ends in many DNA repair pathways of human cells. Determination of the human TREX2 structure is the first of a dimeric 3'-deoxyribonuclease and indicates how this highly efficient nonprocessive enzyme removes nucleotides at DNA 3' termini. Symmetry in the TREX2 dimer positions the active sites at opposite outer edges providing open access for the DNA. Adjacent to each active site is a flexible region containing three arginines positioned appropriately to bind DNA and to control its entry into the active site. Mutation of these three arginines to alanines reduces the DNA binding capacity by approximately 100-fold with no effect on catalysis. The human TREX2 catalytic residues overlay with the bacterial DnaQ family of 3'-exonucleases confirming the structural conservation of the catalytic sites despite limited sequence identity, and mutations of these residues decrease the still measurable activity by approximately 10(5)-fold, confirming their catalytic role.  相似文献   

10.
Oxidative damage to DNA produces abasic sites resulting from the formal hydrolysis of the nucleotides' glycosidic bonds, along with a variety of oxidized abasic sites. The C4'-oxidized abasic site (C4-AP) is produced by several DNA-damaging agents. This lesion accounts for approximately 40% of the DNA damage produced by bleomycin. The effect of a C4'-oxidized abasic site incorporated at a defined site in a template was examined on Klenow fragments with and without 3' --> 5' exonuclease activity. Both enzymes preferentially incorporated dA > dG > dC, T opposite C4-AP. Neither enzyme is able to extend the primer past the lesion. Experiments with regular AP sites in an otherwise identical template indicate that Klenow does not differentiate between these two disparate abasic sites. Extension of the primer by alternative polymerases pol II, pol II exo(-), pol IV, and pol V was examined. Pol II exo(-) was most efficient. Qualitative translesion synthesis experiments showed that pol II exo(-) preferentially incorporates T opposite C4-AP, followed in order by dG, dA, and dC. Thymidine incorporation opposite C4'-AP is distinct from the pol II exonuclease interaction with a regular AP site in an otherwise identical template. These in vitro experiments suggest that bypass polymerases may play a crucial role in survival of cells in which C4-AP is produced, and unlike a typical AP site, the C4-AP lesion may not follow the "A-rule". The interaction between bypass polymerases and a C4-AP lesion could explain the high levels of G:C --> T:A transversions in cells treated with bleomycin.  相似文献   

11.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos have been evaluated with regard to the overall activity of pol gamma and in partial reactions involving template-primer binding and initiation and idling in DNA strand synthesis. Both the 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in pol gamma are stimulated 15-20-fold on oligonucleotide-primed single-stranded DNA by native and recombinant forms of mtSSB. That the extent of stimulation is similar for both enzyme activities over a broad range of KCl concentrations suggests their functional coordination and a similar mechanism of stimulation by mtSSB. At the same time, the high mispair specificity of pol gamma in exonucleolytic hydrolysis is maintained, indicating that enhancement of pol gamma catalytic efficiency is likely not accompanied by increased nucleotide turnover. DNase I footprinting of pol gamma.DNA complexes and initial rate measurements show that mtSSB enhances primer recognition and binding and stimulates 30-fold the rate of initiation of DNA strands. Dissociation studies show that productive complexes of the native pol gamma heterodimer with template-primer DNA are formed and remain stable in the absence of replication accessory proteins.  相似文献   

12.
In a large group of organisms including low G + C bacteria and eukaryotic cells, DNA synthesis at the replication fork strictly requires two distinct replicative DNA polymerases. These are designated pol C and DnaE in Bacillus subtilis. We recently proposed that DnaE might be preferentially involved in lagging strand synthesis, whereas pol C would mainly carry out leading strand synthesis. The biochemical analysis of DnaE reported here is consistent with its postulated function, as it is a highly potent enzyme, replicating as fast as 240 nucleotides/s, and stalling for more than 30 s when encountering annealed 5'-DNA end. DnaE is devoid of 3' --> 5'-proofreading exonuclease activity and has a low processivity (1-75 nucleotides), suggesting that it requires additional factors to fulfill its role in replication. Interestingly, we found that (i) DnaE is SOS-inducible; (ii) variation in DnaE or pol C concentration has no effect on spontaneous mutagenesis; (iii) depletion of pol C or DnaE prevents UV-induced mutagenesis; and (iv) purified DnaE has a rather relaxed active site as it can bypass lesions that generally block other replicative polymerases. These results suggest that DnaE and possibly pol C have a function in DNA repair/mutagenesis, in addition to their role in DNA replication.  相似文献   

13.
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.  相似文献   

14.
Mammalian DNA polymerase (pol) lambda is a member of the X-family of DNA polymerases and has striking enzymatic and structural similarities to mammalian DNA pol beta. Because pol beta provides two important enzymatic activities for base excision repair (BER), we examined whether pol lambda might also contribute to BER. We used extracts from mouse embryonic fibroblasts representing wild-type and null genotypes for pol beta and pol lambda. In combination with neutralizing antibodies against pol beta and pol lambda, our results show a BER deficiency in the pol lambda -/- cell extract compared with extract from isogenic wild-type cells. In addition, the pol lambda antibody strongly reduced in vitro BER in the pol beta -/- cell extract. These data indicate that pol lambda is able to contribute to BER in mouse fibroblast cell extract.  相似文献   

15.
16.
Wang CX  Zakharova E  Li J  Joyce CM  Wang J  Konigsberg W 《Biochemistry》2004,43(13):3853-3861
DNA polymerases from the A and B families with 3'-5' exonucleolytic activity have exonuclease domains with similar three-dimensional structures that require two divalent metal ions for catalysis. B family DNA polymerases that are part of a replicase generally have a more potent 3'-5' exonuclease (exo) activity than A family DNA polymerases that mainly function in DNA repair. To investigate the basis for these differences, we determined pH-activity profiles for the exonuclease reactions of T4, RB69, and phi29 DNA polymerases as representatives of B family replicative DNA polymerases and the Klenow fragment (KF) as an example of a repair DNA polymerase in the A family. We performed exo assays under single-turnover conditions and found that excision rates exhibited by the B family DNA polymerases were essentially independent of pH between pH 6.5 and 8.5, whereas the exo activity of KF increased 10-fold for each unit increase in pH. Three exo domain mutants of RB69 polymerase had much lower exo activities than the wild-type enzyme and exhibited pH-activity profiles similar to that of KF. On the basis of pH versus activity data and elemental effects obtained using short double-stranded DNA substrates terminating in phosphorothioate linkages, we suggest that the rate of the chemical step is reduced to the point where it becomes limiting with RB69 pol mutants K302A, Y323F, and E116A, in contrast to the wild-type enzyme where chemistry is faster than the rate-determining step that precedes it.  相似文献   

17.
The mutagenicity of an oxidized form of dGTP, 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (8-OH-dGTP), was examined using human 293T cells. Shuttle plasmid DNA containing the supF gene was first transfected into the cells, and then 8-OH-dGTP was introduced by means of osmotic pressure. The DNAs replicated in the cells were recovered and then transfected into Escherichia coli. 8-OH-dGTP induced A:T  C:G substitution mutations in the cells. The knock-downs of DNA polymerases η and ζ, and REV1 by siRNAs reduced the A:T  C:G substitution mutations, suggesting that these DNA polymerases are involved in the misincorporation of 8-OH-dGTP opposite A in human cells. In contrast, the knock-down of DNA polymerase ι did not affect the 8-OH-dGTP-induced mutations. The decrease in the induced mutation frequency was more evident by double knock-downs of DNA pols η plus ζ and REV1 plus DNA pol ζ (but not by that of DNA pol η plus REV1), suggesting that REV1-DNA pol η and DNA pol ζ work in different steps. These results indicate that specialized DNA polymerases are involved in the mutagenesis induced by the oxidized dGTP.  相似文献   

18.
Shen X  Woodgate R  Goodman MF 《DNA Repair》2005,4(12):665-1373
Escherichia coli DNA polymerase IV and V (pol IV and pol V) are error-prone DNA polymerases that are induced as part of the SOS regulon in response to DNA damage. Both are members of the Y-family of DNA polymerases. Their principal biological roles appear to involve translesion synthesis (TLS) and the generation of mutational diversity to cope with stress. Although neither enzyme is known to be involved in base excision repair (BER), we have nevertheless observed apurinic/apyrimidinic 5'-deoxyribose phosphate (AP/5'-dRP) lyase activities intrinsic to each polymerase. Pols IV and V catalyze cleavage of the phosphodiester backbone at the 3'-side of an apurinic/apyrimidinic (AP) site as well as the removal of a 5'-deoxyribose phosphate (dRP) at a preincised AP site. The specific activities of the two error-prone polymerase-associated lyases are approximately 80-fold less than the associated lyase activity of human DNA polymerase beta, which is a key enzyme used in short patch BER. Pol IV forms a covalent Schiff's base intermediate with substrate DNA that is trapped by sodium borohydride, as proscribed by a beta-elimination mechanism. In contrast, a NaBH(4) trapped intermediate is not observed for pol V, even though the lyase specific activity of pol V is slightly higher than that of pol IV. Incubation of pol V (UmuD'(2)C) with a molar excess of UmuD drives an exchange of subunits to form UmuD'D+insoluble UmuC causing inactivation of polymerase and lyase activities. The concomitant loss of both activities is strong evidence that pol V contains a bona fide lyase activity.  相似文献   

19.
Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C] captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process with a rate of 68 +/- 0.7 M-1 s-1. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3'----5' exonuclease and polymerase activities were inhibited, and the 5'----3' exonuclease activity was enhanced. In order to study the 5'----3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5'----3' exonuclease activity. When either DNA pol I or polynucleotide was preincubated with 100 microM captan, 5'----3' exonuclease activity exhibited a doubling of reaction rate as compared to the untreated sample. When 100 microM captan was added to the reaction in progress, 5'----3' exonuclease activity was enhanced to 150% of the control value. Collectively, these data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3'----5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pyrococcus furiosus DNA polymerase I (Pol BI) belongs to the family B (alpha-like) DNA polymerases and has a strong 3'-->5' exonucleolytic activity, in addition to its DNA polymerizing activity. To understand the relationship between the structure and function of this DNA polymerase, three deletion mutants, Delta1 (DeltaLeu746-Ser775), Delta2 (DeltaLeu717-Ser775) and Delta3 (DeltaHis672-Ser775), and two substituted mutants of Asp405, D405A and D405E, were constructed. These substitutions affected both the DNA polymerizing and the 3'-->5' exonucleolytic activities. The Delta1 mutant protein had DNA polymerizing activity with higher specific activity than that of the wild-type Pol BI, but retained only 10% of the exonucleolytic activity of the wild-type. The other two deletion mutants lost most of both activities. These results suggest that the DNA polymerizing and exonucleolytic activities are closely related to each other in the folded structure of this DNA polymerase, as proposed in the family B DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号