首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natriuretic peptides are believed to play an important role in the pathophysiology of congestive heart failure (CHF). We utilized a quantitative cytomorphometric method, using double immunocytochemical labeling, to assess the characteristics of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in atrial granules in an experimental model of rats with CHF induced by aortocaval fistula. Rats with CHF were further divided into decompensated (sodium-retaining) and compensated (sodium-excreting) subgroups and compared with a sham-operated control group. A total of 947 granules in myocytes in the right atrium were analyzed, using electron microscopy and a computerized analysis system. Decompensated CHF was associated with alterations in the modal nature of granule content packing, as depicted by moving bin analysis, and in the granule density of both peptides. In control rats, the mean density of gold particles attached to both peptides was 347.0 +/- 103.6 and 306.3 +/- 89.9 gold particles/microm2 for ANP and BNP, respectively. Similar mean density was revealed in the compensated rats (390.6 +/- 81.0 and 351.3 +/- 62.1 gold particles/microm2 for ANP and BNP, respectively). However, in rats with decompensated CHF, a significant decrease in the mean density of gold particles was observed (141.6 +/- 67.3 and 158.0 +/- 71.2 gold particles/microm2 for ANP and BNP, respectively; p<0.05 compared with compensated rats, for both ANP and BNP). The ANP:BNP ratio did not differ between groups. These findings indicate that the development of decompensated CHF in rats with aortocaval fistula is associated with a marked decrease in the density of both peptides in atrial granules, as well as in alterations in the quantal nature of granule formation. The data further suggest that both peptides, ANP and BNP, may be regulated in the atrium by a common secretory mechanism in CHF.  相似文献   

2.
Summary There was no statistically significant difference in basal concentrations of immunoreactive atrial natriuretic peptide (ANP), as assessed by radioimmunoassay, between right and left atrial muscle of control rats; similarly, stereological analysis showed no statistically significant difference in the fractional volume of myocytes occupied by specific heart granules, or in numerical density of granules, between right and left atria. Nevertheless, correlated radioimmunoassay and ultrastructural investigations showed that the major source of elevated plasma levels of ANP after expansion of blood volume was the right atrium. Substantial expansion of blood volume caused an increase in the proportion of peripherally located granules in myocytes of both atria, but reduction in the number of granules and in the concentration and total content of ANP occurred in the right atrium only. Bilateral cervical vagotomy also caused a statistically significant elevation of plasma ANP concentration, accompanied by a statistically significant reciprocal reduction in right atrial ANP content; no statistically significant change occurred in left atrial ANP. When blood volume was expanded after bilateral vagotomy, there was a further statistically significant increase in plasma ANP concentration; this was accompanied by further reduction in right atrial ANP and, moreover, the combined manoeuvre also elicited a statistically significant reduction of ANP in the left atrium. Ultrastructural studies confirmed that, under these conditions, myocytes in both atria showed a marked depletion of specific heart granules.  相似文献   

3.
A qualitative and quantitative ultrastructural study of right atrial cardiomyocytes in WAG (normotensive control) and ISIAH (inherited stress-induced arterial hypertension) rats of different age (on day 18 of embryogenesis, on days 12 and 21 after birth, and at an age of 6 and 13 months) was performed. It was shown that, in embryos with an as yet incomplete atrial morphogenesis, secretory granules containing natriuretic peptides are actively formed, accumulated, and dissolved. In postnatal ontogeny, the secretory product is accumulated in atrial cells. In all ontogeny stages studied, the numerical density of secretory granules in the myoendocrine cells of hypertensive rats is greater and the qualitative composition of these granules is more diverse than in the control. It was established that, in atrial myocytes of ISIAH rats, the morphological signs of natriuretic peptide hypersecretion precede the development of genetically programmed high blood pressure. In adult hypertensive rats, hypertrophic and degenerative changes in myocytes are accompanied by excessive accumulation of secretory granules, some of which undergo intracellular degradation.  相似文献   

4.
Summary We have demonstrated that atrial natriuretic peptide-like immunoreactivity is stored and secreted by ventricular and atrial myocytes in dissociated cell culture preparations from the heart of newborn rat. Culture preparations were maintained in either foetal calf serum-supplemented medium 199 or in hormone-supplemented, serum-free medium 199. The presence of atrial natriuretic peptidelike immunoreactivity in the cultured myocytes was demonstrated at both light-and electron-microscopical levels. Release of atrial natriuretic peptide-like immunoreactivity into the culture medium was measured by radioimmunoassay; molecular forms of the stored and secreted peptide were determined by gel column chromatography. The atrial natriuretic peptide-like immunoreactivity of cultured atrial and ventricular myocytes was concentrated in the perinuclear cytoplasm and was localised to electron-dense secretory granules. The number of immunoreactive ventricular myocytes and the intensity of their immunofluorescence changed with time in culture and was higher in cultures in foetal calf serum-supplemented medium than in serum-free medium. Gamma-atrial natriuretic peptide was stored and released by cultured atrial and ventricular myocytes, but was broken down to alpha-atrial natriuretic peptide in the growth medium. This process was foetal calf serum-independent, since it occurred in both the media used, indicating that cardiac myocytes in culture may release a factor that cleaves gamma-atrial natriuretic peptide to form alphaatrial natriuretic peptide.  相似文献   

5.
The localization of the N-terminal fragment of the atrial natriuretic factor (ANF) precursor in the heart of the frog Rana ridibunda was examined by the indirect immunofluorescence and the immunogold techniques using an antiserum directed against synthetic rat ANF (Asp11-Ala37). At the optic level, positive material was found in most atrial myocytes. Staining of consecutive sections of frog heart with antibodies against N-terminal and C-terminal regions of the proANF molecule showed that both peptides are contained in the same cardiocytes. In the rat atrium, antibodies against the N-terminal ANF region induced a more intense labeling than in the frog atrium. Electron microscopic studies indicated that all secretory granules present in frog atrial cardiocytes contain N-terminal ANF-like immunoreactive material. The positive material localized in frog atrium was characterized by gel filtration and radioimmunological detection. Serial dilutions of frog atrial extracts exhibited displacement curves which were parallel to that obtained with synthetic human ANF (Asn1-Asp30). Sephadex G-50 gel chromatography of the immunoreactive material showed that the N-terminal ANF-like immunoreactivity eluted in a single peak corresponding to high molecular weight material. These results indicate that the N-terminal fragment of frog proANF is immunologically and biochemically related to the homologous mammalian peptide.  相似文献   

6.
Chromogranin A (CgA) belongs to the granin family of acidic proteins that are present in the secretory granules of many endocrine, neuroendocrine, and nerve cells. CgA has been shown to be stored in cardiomyocyte secretory granules of the rat heart atrium together with atrial natriuretic peptide (ANP). CgA-derived peptides (vasostatins) are known to produce a cardiosuppressive effect on isolated and working in vitro frog and rat hearts. Recently, CgA-derived vasostatin-containing peptides have been identified in rat hearts, whereas no data are available so far about the presence of CgA in the frog heart. In our work, we have studied the subcellular CgA localization in atrial myocytes of the adult frog R. temporaria heart by using an ultraimmunocytochemical method. Immunocytochemical staining of the frog atrial tissue for CgA and ANP showed the presence of the CgA-immunoreactive material in two types (A and B) of large specific atrial secretory granules, whereas no gold particles were revealed over the small granules (D) with a high electron density core. Similar results were obtained during the immunocytochemical staining by an antibody to ANP of the drog atrial cardiomyocytes. The data of the present work allow for the suggestion that CgA revealed in frog atrial cardiomyocytes, like CgA in rat cardiomyocytes, can be considered to be a precursor of intracardial vasostatins that, together with ANP, can play an important cardioprotector role under conditions of stress.  相似文献   

7.
Summary In the Golgi region of cultured rat atrial myocytes, condensed secretory protein was seen in Golgi-associated tubules or cisternae which lay beyond, and often separated from, the remainder of the Golgi stacks. These structures appeared to be involved in packaging of condensed secretory protein into atrial granules. Binding sites of HRP-conjugated wheat-germ agglutinin (WGA) in saponin-treated cultured atrial myocytes were examined by electron microscopy with special reference to atrial granules and the tubular structures associated with the Golgi stacks. HRP reaction products were observed in both trans-cisternae of the Golgi stacks and the associated tubular structures. While the majority of atrial granules were devoid of reaction products, some granules, which were connected to the WGA-positive tubular structures in the vicinity of the Golgi trans-cisternae, showed HRP reaction products at their connected necks. Similar results were obtained when sections of the cells embedded in Lowicryl K4M were labeled with WGA coupled to colloidal gold (G-WGA); the Golgi complex was G-WGA positive, whereas no specific binding of G-WGA to atrial granules was observed. These results suggest that glycoproteins and/or glycolipids with oligosaccharides recognized by WGA in the Golgi transcisternae, may be separated from atrial natriuretic peptides which are packaged into atrial granules.Abbreviations ANP atrial natriuretic peptide - HRP horseradish peroxidase - M199 medium 199 - TGN trans-Golgi network - WGA wheat-germ agglutinin - G-WGA WGA coupled to colloidal gold  相似文献   

8.
A close spatial relationship between specific granules containing atrial natriuretic factor (ANF) and microtubules was demonstrated in primary cultures of neonatal rat cardiac myocytes. For the detection of specific granules and microtubules, the myocytes were double immunolabelled with antibodies against -ANF and -tubulin and examined by conventional fluorescence or laser scanning confocal microscopy. In addition, the ultrastructural distribution of specific granules was demonstrated by electron microscopy. In the atrial myocytes, ANF was stored in numerous specific granules that were mainly localized in the perinuclear sarcoplasm. In the ventricular myocytes, however, a minority of the cells (10%) exhibited limited ANF immunoreactivity after 4 days in culture. Microtubules were present throughout the sarcoplasm of the myocytes. They were most densely packed in the perinuclear regions. Depolymerization of the microtubules with nocodazole was followed by dispersal of ANF immunostaining both in the atrial myocytes and in the ventricular myocytes exhibiting ANF immunoreactivity. When the microtubules were allowed to recover, the perinuclear distribution of specific granules, as seen in non-treated myocytes, reappeared. Measurements of secreted immunoreactive ANF by radioimmunoassay revealed that the secretion of ANF from atrial myocytes into the medium was significantly reduced following nocodazole treatment, whereas a similar decrease in secretion from ventricular myocytes was not observed. These findings indicate that ANF-containing specific granules are closely associated with microtubules within the myocytes. It is suggested that secretion of ANF from the atrial myocytes, in contrast to the ventricular myocytes, is microtubule-dependent.  相似文献   

9.
The present study examined the ultrastructure of atrial and ventricular myocytes from the heart of newborn rats. It was found that, despite former reports stating that ventricular myocytes in adults do not contain cytoplasmic granules, specific atrial granule-like organelles are present in the ventricles of rats at birth. The presence of these granules together with the relatively underdeveloped contractile apparatus and extensive Golgi complex suggests that the ventricular, like the atrial, myocytes may have an endocrine function before or at birth. Further study is required to determine whether these ventricular cytoplasmic granules contain the same atrial natriuretic peptide species known to be present in the atrial specific granules.  相似文献   

10.
本研究运用透射电镜及形态计量学方法结合免疫组织化学技术对成年自发性高血压大鼠(SHR)的右心耳肌细胞心房特殊颗粒(ASG)和心房利钠肽(ANP)的免疫反应强度进行了观察和定量研究。成年自发性高血压大鼠的心肌细胞内,ASG数目增加,直径增大,高尔基复合体发达;线粒体轻度肿胀,部分嵴溶解断裂,部分内质网扩张,糖原颗粒增多。ANP免疫反应增强与ASG数目的增加一致。提示自发性高血压大鼠ANP的合成和释放均增加,以维持机体在高血压状态下血压的平衡和内环境的稳定。  相似文献   

11.
Krylova MI 《Tsitologiia》2007,49(7):538-543
Chromogranin A (CgA) is a member of the granin family of acidic proteins that present in the secretory granules (SGs) of many endocrine, neuroendocrine and neuronal cells. Atrial natriuretic peptide (ANP)-storing SGs in atrial cardiomyocytes of rat heart also contain CgA. Cardiosuppressive effect of CgA-derived peptides (vasostatins) on in vitro isolated and perfused working frog and rat hearts has been shown under both basal conditions and beta-adrenergic stimulation. More recently it has been revealed that rat heart produces and processes CgA-derived vasostatin-containing peptides. Until now nothing has been known about the presence of CgA in an amphibian heart. We have investigated the subcellular localization of CgA in atrial myocytes of adult frog Rana temporaria heart using ultraimmunocytochemical method. Immunocytochemical staining of the frog atrial tissue for CgA and ANP has shown that out of three morphologically different types (A, B and D) of specific cytoplasmic granules (SCGs) present in myocytes only two (A and B)--large (120-200 nm in diameter) granules with more and with less electron dense core--exhibit immunoreactivity (IR) to these two antigens. The third type (D) of granules (80-100 nm in diameter) are small membrane bound granules characterized by highly electron dense core surrounded with a thin halo. These granules revealed negative reaction on immunostaining for both CgA and ANP. The presence of CgA- and ANP-IR in the same SCGs in frog atrial myocytes is consistent with the endocrine nature of these granules. Taking into account our and literature data we propose that CgA present in frog atrial cardiomyocite SCGs might be a precursor of vasostatin-containing peptides, as it takes place in rat heart. It is possible that these CgA-derived peptides together with ANP exert their regulatory function through the autocrine and/or paracrine mechanisms and play important cardioprotective role in frog heart under stress condition.  相似文献   

12.
Using an ultrastructural assay developed to quantify the secretion of atrial natriuretic peptide-containing granules, release of the hormone, in response to different degrees of atrial distension, is directly demonstrated at the cellular level. The ultrastructural assay developed uses an in situ tannic acid perfusion technique to arrest the exocytosis of atrial granules in the anesthetized rat. Secretory granules, which retain the capacity to undergo exocytosis throughout a 30-minute tannic acid perfusion, accumulate at the cell surface in a state of fusion with the plasma membrane, with the core contents retained. Quantification of arrested granules thus provides a measure of the rate of granule release and allows the responses to different stimuli to be assessed. By altering the height of the perfusate, perfusion pressure and hence the degree of distension of the right atrium can be increased, and this causes a proportional rise in the release of secretory granules from individual myocytes. An anesthetic regime incorporating fentanyl citrate was found to increase significantly the rate of granule release, and this was further augmented by atrial distension. Quantification of the numbers of cytoplasmic granules under the same conditions did not reveal a reduction in granules. This is thought to be because only a small pool of granules is recruited for exocytosis, and granule production may continue during the perfusion period. Our assay of atrial secretory granule release allows the effect of a variety of stimulatory and inhibitory agents to be assessed directly at the cellular level and provides an independent comparison with previous biochemical data from whole animal and isolated organ studies. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Summary The renal and in vitro vascular effects of atrial natriuretic peptides have been examined in seveal species of fish. However, comparatively few investigations have described the effects of these peptides on the cardiovascular system in vivo. In the present experiments the dorsal aorta and urinary bladder were cannulated and the effects of atrial natriuretic peptides from rat and eel were monitored in conscious trout during bolus injection or continuous atrial natriuretic peptide infusion. The results show that the initial pressor effect of atrial natriuretic peptides is independent of environmental salinity adaptation (fresh or seawater) and the chemical form of atrial natriuretic peptide injected, but it is affected by the rate of atrial natriuretic peptide administration. This pressor response, and the accompanying diuresis, are mediated through -adrenergic activation. Continuous infusion of either rat or eel atrial natriuretic peptide produces a steady fall in mean arterial blood pressure, which is temporally preceded by an increase in heart rate and a decrease in pulse pressure. Diuresis induced by atrial natriuretic peptides is only partially sustained during continuous infusion. Propranolol partially blocks the increase induced in heart rate by atrial natriuretic peptides, but does not affect either pulse pressure or mean arterial pressure. Propranolol significantly increases urine flow in saline-infused animals but has no apparent effect on animals subjected to infusions of atrial natriuretic peptides. These results indicate that there are multiple foci for the action of atrial natriuretic peptides in trout and that in many instances the effects of atrial natriuretic peptides are mediated through secondary effector systems.Abbreviations ANP atrial natriuretic peptide - bw body weight - PBS phosphate-buffered saline  相似文献   

14.
The purpose of the present experiments was to define the role of C-type natriuretic peptide (CNP) in the regulation of atrial secretion of atrial natriuretic peptide (ANP) and atrial stroke volume. Experiments were performed in perfused beating and nonbeating quiescent atria, single atrial myocytes, and atrial membranes. CNP suppressed in a dose-related fashion the increase in atrial stroke volume and ANP secretion induced by atrial pacing. CNP caused a right shift in the positive relationships between changes in the secretion of ANP and atrial stroke volume or translocation of the extracellular fluid (ECF), which indicates the suppression of atrial myocytic release of ANP into the paracellular space. The effects of CNP on the secretion and contraction were mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP). CNP increased cGMP production in the perfused atria, and the effects of CNP on the secretion of ANP and atrial dynamics were accentuated by pretreatment with an inhibitor of cGMP phosphodiesterase, zaprinast. An inhibitor of the biological natriuretic peptide receptor (NPR), HS-142-1, attenuated the effects of CNP. The suppression of ANP secretion by CNP and 8-BrcGMP was abolished by a depletion of extracellular Ca(2+) in nonbeating atria. Natriuretic peptides increased cGMP production in atrial membranes with a rank order of potency of CNP > BNP > ANP, and the effect was inhibited by HS-142-1. CNP and 8-BrcGMP increased intracellular Ca(2+) concentration transients in single atrial myocytes, and mRNAs for CNP and NPR-B were expressed in the rabbit atrium. From these results we conclude that atrial ANP release and stroke volume are controlled by CNP via NPR-B-cGMP mediated signaling, which may in turn act via regulation of intracellular Ca(2+).  相似文献   

15.
We have studied the accumulation and excretion of atrial (ANP) and brain (BNP) natriuretic peptides in the early and late postreperfusion period (60 min and 60 days) in the myocardium of the right atrium in rats. The model of total ischemia proposed by Korpachev et al. (1982) was used. Immunocytochemical localization of peptides in cardiomyocytes was performed on ultrathin sections using the polyclonal antibodies. The intensities of accumulation (excretion) of ANP and BNP were analyzed by counting the immunolabeled granules (types A and B) with a transmission electron microscope. At 60 min and 60 days of the postreperfusion period, an increase in the synthesis and release of ANP and BNP was found. A more pronounced BNP reaction could be explained by the fact that, under normal conditions, the main hormone of the natriuretic peptide system regulating blood pressure is ANP, while BNP regulates blood pressure in cardiovascular pathology.  相似文献   

16.
Atrial natriuretic factor   总被引:3,自引:0,他引:3  
R Palluk  W Gaida  W Hoefke 《Life sciences》1985,36(15):1415-1425
Mammalian atria contain different peptides with potent diuretic, natriuretic, smooth muscle relaxing and blood pressure lowering properties. A preprohormone of these peptides is synthetized and stored in specific granules in atrial myocytes. Different peptides have been isolated, analyzed and in vitro synthetized. Their biological activity indicates a potential role in the regulation of volume and sodium homeostasis as well as in blood pressure regulation.  相似文献   

17.
Atrial natriuretic peptide (ANP) is stored in atrial granules primarily as a larger molecular weight precursor (pro-ANP), which is believed to be rapidly converted to an active peptide of 28 amino acids during or shortly after secretion. A tissue kallikrein-like serine protease has been suggested as a potential processing enzyme. In the present immunocytochemical study, using specific monoclonal antibodies, we found that esterase A, a kallikrein-like serine protease, was demonstrable in rat atrial myocytes and in ventricular myocytes, and was capable of cleaving pro-ANP to yield a low molecular weight product. Using colloidal gold immunocytochemistry at the electron microscopic level, we have found esterase A in atrial myocytes, both in granules and in another subcellular site that corresponds to sarcoplasmic reticulum. Double-label electron microscopic immunocytochemical results indicated that esterase A can co-localize with ANP in granules of atrial myocytes.  相似文献   

18.
Acid extracts of rat hypothalamus and atrium were prepared by a procedure previously shown to minimize proteolytic degradation of peptides. The majority of the immunoactive material in the atrial extracts had a molecular weight of approximately 9,000 to 15,000 daltons, while that in the hypothalamic extracts had a molecular weight of about 1,500 to 1,800 daltons. The major molecular weight forms of atrial natriuretic peptide from each extract were further distinguishable when analyzed by RP-HPLC. These results suggest that small peptides such as atriopeptins I, II, and III, may not be authentic post-translational processing products in the atrium, and that the hypothalamus and atrium may differentially cleave pro-atrial natriuretic peptide to form tissue-specific products.  相似文献   

19.
20.
The atrial and ventricular cardiocytes of the house musk shrew were examined by immunohistochemistry, and the right atrium containing the auricle was studied by transmission electron microscopy. The atrial natriuretic peptide (ANP)-granules of the cardiocytes in the auricle and the rest of the atrium were also analyzed by ultrastructural morphometry. On immunohistochemistry, ANP immunoreactivity was detected in the atria, with the most intensely reacting cardiocytes being localized in the right auricular part of the atrium. ANP immunoreactivity was not detected in the ventricular muscles. On ultrastructure, in most of the atrial cardiocytes including the auricle, ANP-granules, well-developed Golgi apparatus and rough endoplasmic reticulum were observed, and the nuclei were characteristically situated in the periphery of the cardiocytes, being different from many other mammalian hearts. The ANP-granules were classified into two types (A and B), with most of these granules being located in the paranuclear region in association with the Golgi apparatus, and a few ANP granules being observed throughout the sarcoplasmic layers intervening between the myofibrilar bundles. On ultrastructural morphometry, the total number of granules in the right auricular cardiocytes was significantly greater than those in the atrial cardiocytes, and the diameter of the A-granules was significantly greater than that of the B-granules in both the atrial and auricular cardiocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号