首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rhou encodes a Cdc42-related atypical Rho GTPase that influences actin organization in cultured cells. In mouse embryos at early-somite to early-organogenesis stages, Rhou is expressed in the columnar endoderm epithelium lining the lateral and ventral wall of the anterior intestinal portal. During foregut development, Rhou is downregulated in regions where the epithelium acquires a multilayered morphology heralding the budding of organ primordia. In embryos generated from Rhou knockdown embryonic stem (ES) cells, the embryonic foregut displays an abnormally flattened shape. The epithelial architecture of the endoderm is disrupted, the cells are depleted of microvilli and the phalloidin-stained F-actin content of their sub-apical cortical domain is reduced. Rhou-deficient cells in ES cell-derived embryos and embryoid bodies are less efficient in endoderm differentiation. Impaired endoderm differentiation of Rhou-deficient ES cells is accompanied by reduced expression of c-Jun/AP-1 target genes, consistent with a role for Rhou in regulating JNK activity. Downregulation of Rhou in individual endoderm cells results in a reduced ability of these cells to occupy the apical territory of the epithelium. Our findings highlight epithelial morphogenesis as a required intermediate step in the differentiation of endoderm progenitors. In vivo, Rhou activity maintains the epithelial architecture of the endoderm progenitors, and its downregulation accompanies the transition of the columnar epithelium in the embryonic foregut to a multilayered cell sheet during organ formation.  相似文献   

3.
The inner cell mass of the blastocyst has differentiated into epiblast and hypoblast (primitive endoderm) prior to implantation. Since endoderm cells extend beyond the epiblast, it can be considered that both parietal and visceral endoderm are present. At implantation, epiblast cells begin to show marked evidence of polarity. They form a spherical aggregate with their basal ends toward the basal lamina and apical ends toward the interior. The potential for an internal space is formed by this change in polarity of the cells. No cytological evidence of separation of those cells that will form amniotic epithelium from the rest of the epiblast is seen until a cavity begins to form. The amniotic epithelium is originally contiguous with overlying cytotrophoblast, and a diverticulum remains in this position during early development. Epiblast forms a pseudostratified columnar epithelium, but dividing cells are situated toward the amniotic cavity rather than basally. The first evidence of a trilaminar disc occurs when a strand of cells contiguous with epiblast is found extending toward visceral endoderm. These presumptive mesoderm cells are undifferentiated, whereas extraembryonic mesoderm cells are already a distinct population forming extracellular materials. After implantation, visceral endoderm cells proliferate forming an irregular layer one to three cells thick. Visceral endoderm cells have smooth apical surfaces, but very irregular basal surfaces, and no basal lamina. At the margins of the disc, visceral endoderm is continuous with parietal endoderm and reflects back over the apices of the marginal visceral endoderm cells. This sacculation by visceral endoderm cells precedes pinching off of the secondary yolk sac from the remaining primary yolk sac.  相似文献   

4.
The 12th postcoital day otocyst appears as a hollow cellular ball of pseudostratified columnar epithelium that has entered into its inital stages of differentiation and organogenesis. H-2b antigen was demonstrated on the ectodermally derived epithelial cells of the otocysts and on the mesodermally derived cells of the surrounding mesenchyme. Thy-1.2 antigen was detected in the mesenchymal cells, but not on the epithelial cells of the otocyst. The use of Nomarski optics as a new method for detecting cell surface staining that would otherwise be undetected by bright field optics was demonstrated.  相似文献   

5.
Several lines of evidence suggest that the extraembryonic endoderm of vertebrate embryos plays an important role in the development of rostral neural structures. In mice, neural inductive signals are thought to reside in an area of visceral endoderm that expresses the Hex gene. Here, we have conducted a morphological and lineage analysis of visceral endoderm cells spanning pre- and postprimitive streak stages. Our results show that Hex-expressing cells have a tall, columnar epithelial morphology, which distinguishes them from other visceral endoderm cells. This region of visceral endoderm thickening (VET) is found overlying first the distal and then one side of the epiblast at stages between 5.5 and 5.75 days post coitum (d.p.c.). In addition, we show that the epiblast has an anteroposterior-compressed appearance that is aligned with the position of the VET. Intracellular labeling of VET/Hex-expressing cells reveals an anterior and anterolateral shift from their distal epiblast position. VET/Hex-expressing cells are first localized to the anterior side of the epiblast by 5.75 d.p.c. and form a crescent on the anterior half of the embryo at the onset of gastrulation. Subsequently, VET descendants are distributed along the embryonic/extraembryonic boundary by headfold stages at 7.5 d.p.c. The morphological characteristics and position of VET/Hex-expressing cells distinguishes the future anteroposterior axis of the embryo and provide landmarks to stage mouse embryos at preprimitive streak stages. Moreover, the morphological characteristics of pregastrulation mouse embryos together with the stereotyped shift in the position of visceral endoderm cells reveal similarities among amniote embryos that suggest an evolutionary conservation of the mechanisms that pattern the rostral neurectoderm at pregastrula stages.  相似文献   

6.
7.
Summary Allantoic endoderm of 3.5-day chick embryos was cultured in recombination with digestive-tract mesenchymes of 6-day chick embryos, and the differentiation of the endoderm was studied, with special attention being given to the appearance of brush-border (BB) antigens and sucrase. Irrespective of the origin of the associated digestive-tract mesenchymes, the allantoic endoderm differentiated into a columnar epithelium, expressing BB antigens and sucrase, and also into a BB antigen-negative pseudostratified or stratified epithelium of cuboidal or columnar cells with PAS or alcian blue staining in the apical portion or a BB antigen-negative stratified squamous epithelium. These results suggest that 3.5-day allantoic endoderm has the potency to differentiate into intestinal and cloacal epithelium.  相似文献   

8.
The development of the guinea pig gallbladder epithelium was studied from the 19th day of intrauterine life to the 31st postnatal day by means of histological and histochemical staining reactions. At first, the epithelium is a columnar pseudostratified one. Its transformation into a simple columnar eptihelium is terminated by the 31st day of the intrauterine life. Then the epithelial cells become more columnar and their nuclei acquire a basal position. Somewhat later the epithelium invaginates the underlying mesenchyme. Up to the 57th day the epithelium contains much glycogen. Neutral and carboxylated mucosubstances are demonstrable after the 30th day. From the 48th day onwards sulphated mucosubstances can be visualized in some cells in the depth of the invaginations and from the 51st day in the epithelial cells of the gallbladder. "Light" mucoid cells appear first in the epithelium of day 58. After the 6th postnatal day the "light" cells are rarely seen in the invaginations. The development of the gallbladder epithelium is completed about the 10th postnatal day. The epithelial mucosubstances of the gallbladder of the adult animal could be classified as GC- mucins and S-mucinsA, 1.0 MgCl2.  相似文献   

9.
10.
Neurogenic placodes are specialized regions of embryonic ectoderm that generate the majority of the neurons of the cranial sensory ganglia. Here we examine in chick the mechanism underlying the delamination of cells from the epibranchial placodal ectoderm. We show that the placodal epithelium has a distinctive morphology, reflecting a change in cell shape, and is associated with a breach in the underlying basal lamina. Placodal cell delamination is distinct from neural crest cell delamination. In particular, exit of neuroblasts from the epithelium is not associated with the expression of Snail/Snail2 or of the Rho family GTPases required for the epithelial-to-mesenchymal transition seen in neural crest cell delamination. Indeed, cells leaving the placodes do not assume a mesenchymal morphology but migrate from the epithelium as neuronal cells. We further show that the placodal epithelium has a pseudostratified appearance. Examination of proliferation shows that the placodal epithelium is mitotically quiescent, with few phosphohistone H3-positive cells being identified. Where division does occur within the epithelium it is restricted to the apical surface. The neurogenic placodes thus represent specialized ectodermal niches that generate neuroblasts over a protracted period.  相似文献   

11.
BACKGROUND: Signals from anterior endodermal cells that express the homeobox gene Hex initiate development of the most rostral tissues of the mouse embryo. The dorsal/anterior endoderm of the Xenopus gastrula, which expresses Hex and the putative head-inducing gene cerberus, is proposed to be equivalent to the mouse anterior endoderm. Here, we report the origin and signalling properties of this population of cells in the early Xenopus embryo. RESULTS: Xenopus anterior endoderm was found to derive in part from cells at the centre of the blastocoel floor that express XHex, the Xenopus cognate of Hex. Like their counterparts in the mouse embryo, these Hex-expressing blastomeres moved to the dorsal side of the Xenopus embryo as gastrulation commenced, and populated deep endodermal adjacent to Spemann's organiser. Experiments involving the induction of secondary axes confirmed that XHex expression was associated with anterior development. Ventral misexpression of XHex induced ectopic cerberus expression and conferred anterior signalling properties to the endoderm. Unlike the effect of misexpressing cerberus, these signals could not neuralise overlying ectoderm. CONCLUSIONS: XHex expression reveals the unexpected origin of an anterior signalling centre in Xenopus, which arises in part from the centre of the blastula and localises to the deep endoderm adjacent to Spemann's organiser. Signals originating from these endodermal cells impart an anterior identity to the overlying ectoderm, but are insufficient for neural induction. The anterior movement of Hex-expressing cells in both Xenopus and mouse embryos suggests that this process is a conserved feature of vertebrate development.  相似文献   

12.
白鱀豚的肺分左右2叶,不分小叶,肺门位置高。气管分叉成左右主支气管和气管支气管,气管支气管分叉点的位置较高,情形与拉河豚相近。3条主支气管进入肺以后便成为肺内支气管树的主干,其分支的分布区可暗示假定肺叶的存在(共5叶,左2右3)。从气管起一直到呼吸性支气管都存在软骨组织。气管的粘膜上皮为假复层纤毛柱状上皮,夹有杯状细胞。主支气管为单层柱状上皮,无杯状细胞。小支气管和细支气管又变为假复层纤毛柱状上皮,杯状细胞少。细支气管以下逐步改变为单层柱状上皮和立方上皮。各级支气管均未见腺体存在。从呼吸性细支气管到肺泡管的通道口,有括约肌存在。各级支气管一直到肺泡壁均有平滑肌存在,从断续出现到连续的环层。弹性纤维在整个气管均很丰富。    相似文献   

13.
Sonic hedgehog (Shh) gene encodes a secreted protein that acts as an important mediator of cell–cell interactions. A detailed analysis of Shh expression in the digestive organs of the chicken embryo was carried out. Shh expression in the endoderm begins at stage 7, when the formation of the foregut commences, and is found as narrow bands in the midgut. Shh expression around the anterior intestinal portal at stage 15 is restricted to the columnar endoderm lined by the thick splanchnic mesoderm, suggesting that the existence of thick splanchnic mesoderm might be necessary for Shh expression in the columnar endoderm. After the gut is closed, Shh expression is found universally in digestive epithelia, including the cecal epithelium. However, its expression ceases in the epithelium of the proventricular glands, the ductus choledochus and ductus pancreaticus that protrude from the main digestive duct. When the gizzard epithelium differentiated into glands under the influence of the proventricular mesenchyme, the glandular epithelium lost the ability to express Shh . These findings suggest that Shh expression in the epithelium may be regulated by surrounding mesenchyme throughout organogenesis of the digestive organs and is closely involved in epithelial–mesenchymal interactions in developing digestive organs.  相似文献   

14.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

15.
16.
17.
The epidermis of Eisenia is covered by a cuticle and rests on a basement lamella. The cuticle, which is resistant to a variety of enzymes, is composed of non-striated, bundles of probable collagen fibers that are orthogonally oriented and are embedded in a proteoglycan matrix. The basement lamella consists of striated collagen fibers with a 560 Å major periodicity. Proximity and morphology suggest that the epidermis may contribute to both the cuticle and the basement lamella — that is, the single tissue may synthesize at least two types of collagen. The epidermis is a pseudostratified epithelium containing three major cell types (columnar, basal and gland) and a rare fourth type with apical cilia. The esophagus is lined by a simple cuticulated epithelium composed predominantly of a single cell type, which resembles the epidermal columnar cell. Rare gland cells occur in the esophageal epithelium, but basal cells are lacking.  相似文献   

18.
Summary After gentle trypsinization, the pseudostratified columnar Müllerian epithelium that lines the uterine cervix of newborn mice could be separated from the enclosing stromal tissue. Pure epithelial tubes explanted in vitro and were allowed to grow in a standard medium for 3–4 days forming a confluent colony of rather closely-fitting cells. The cell sheet was studied by a preparatory technique that allows examination of a large number of cells with preserved intercellular spatial orientation. Attempts were made to identify cultured cells according to the morphology of cell types in the cervicovaginal epithelium in vivo.Electron micrographs revealed that, close to the explant, the cultured cell sheet exhibited several features similar to the Müllerian epithelium in vivo. Outside these central areas of the colony was a broad transitional zone consisting of thin platelike cells distinguished by an abundance of microfilaments. At the periphery of the colonies, bulky cells possessing microvilli and a vacuolated cytoplasm tended to overlap adjoining platelike cells. These bulky cells had a morphology resembling that of the superficial cells seen in the upper vagina and common cervical canal of immature and diestrous animals. The epithelial development in the cultures apparently simulated the transformation in vivo from a pseudostratified Müllerian epithelium in the newborn to a stratified epithelium resembling that of the uppermost vagina and common cervical canal of immature animals. Judged by morphological and cytochemical criteria, the Müllerian cells in the outgrowth obviously had many changed features. It thus seems questionable whether the cells grown in vitro are comparable with the corresponding cells in vivo when used for experiments requiring the controlled conditions of the culture environment.Supported by grants from the Norwegian Research Council for Science and the Humanities and from the Norwegian Cancer Society  相似文献   

19.
While the larval midgut of Manduca sexta has been intensively studied as a model for ion transport, the developmental origins of this organ are poorly understood. In our study we have used light and electron microscopy to investigate the process of midgut epithelial cell differentiation in the embryo. Our studies were confined to the period between 56 and 95 hr of embryonic development (hatching is at 101 hr at 25 degrees C), since preliminary studies indicated that all morphologically visible differentiation of the midgut epithelium occurs during this time. At 56 hr the midgut epithelium is organized into a ragged pseudostratified epithelium. Over the next 10 hr, the embryo molts and the midgut epithelium takes on a distinctive character in which the future goblet and columnar cells can be identified. With further differentiation, closed vesicles in the goblet cells expand and subsequently communicate to the outside by way of a valve. The columnar cells form numerous microvilli on their apical surfaces that extend over the goblet cells. Both cell types form basal folds from a series of plasmalemmal invaginations. Differentiation occurs concurrent with a six-fold elongation of these cells.  相似文献   

20.
The epididymis of buffalo is differentiated into 6 regions. The head represents the first 3 regions, the body the 4th region and the tail the 5th and 6th region. At 3-30 weeks, the epithelium is simple high columnar with few basal cells in region I, simple low columnar with few basal cells in region II, pseudostratified low columnar in regions III, IV, V, and pseudostratified low columar in region VI. As age advances, the epithelium increases in height and shows a tendency toward advanced pseudostratification. The basal cells are greater in number in regions III, IV and V than in the other regions of the epididymis. The epithelial cells contain stereocilia in region I at 3 weeks and regions III, IV and V at 30 weeks, whereas they are absent in regions II and VI. The tubules in region I are the smallest in diameter while the tubules in region VI have the largest diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号