首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Nuclear transfer experiments in mammals have attempted to reprogram a donor nucleus to a state equivalent to the zygotic one. Reprogramming of the donor nucleus is, among other features, indicated by a synthesis of ribosomal RNA (rRNA). The initiation of rRNA synthesis is simultaneously reflected in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout all three cell cycles. In the eight-cell stage embryo, a primary vacuole appeared as an electron lucid area originating in the centre of the nucleolar precursor body. In nuclear transfer embryos reconstructed from nonactivated cytoplasts, the nuclear envelope was fragmented or completely broken down at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary vacuoles. A nucleolar precursor body typical for the two-cell stage control embryos was never observed. None of the reconstructed embryos of this group reached the eight-cell stage. Nuclear transfer embryos reconstructed from activated cytoplasts, in contrast, exhibited a complete nuclear envelope at all time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear transfer embryos, which was one cell cycle earlier than in control embryos. Only nuclear transfer embryos reconstructed from activated cytoplasts underwent complete remodelling of the nucleolus. The reorganisation of the donor nucleolar architecture into a functionally active nucleolus was observed as early as in the four-cell stage nuclear transfer embryo. These ultrastructural observations were correlated with our autoradiographic data on the initiation of RNA synthesis in nuclear transfer embryos.  相似文献   

6.
7.
The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection. Here we have investigated the possible effects of rRNA synthesis inhibition upon the development of HCMV lytic infection, by using either actinomycin D or cisplatin at low concentrations, that are known to selectively inhibit RNA polymerase I activity, whilst leaving RNA polymerase II function unaffected. Following the inhibition of rRNA synthesis by either of the agents used, we observed a significant redistribution of nucleolar proteins within the nucleoplasm and a simultaneous depletion of viral pp65 from the nucleolus; this effect was highly evident in both unextracted cells and in nuclear matrices in situ. Of particular interest, even a brief suppression of rRNA synthesis resulted in a very strong inhibition of the progression of HCMV infection, as was concluded from the absence of accumulation of HCMV major immediate‐early proteins within the nucleus of infected cells. These data suggest that a functional relationship might exist between rRNA synthesis, pp65 localization to the nucleolar matrix and the normal development of HCMV lytic infection. J. Cell. Biochem. 108: 415–423, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
L Miller  J C Daniel 《In vitro》1977,13(9):557-563
Cells of embryos carrying a lethal nucleolar mutation have been maintained in vitro for extended periods of time. Normally these mutants live only 9 to 12 days after fertilization but their cells in culture will survive for more than 3 months. The extent of ribosomal RNA (rRNA) synthesis was determined in primary cultures prepared from normal embryos and nucleolar mutants having different numbers of ribosomal RNA genes. We found that the accumulation of radioactivity into rRNA for normal and mutant embryos was similar in vivo and in vitro. In primary cultures of normal embryos which have two nucleoli per cell and mutant embryos which have only one nucleolus per cell, the incorporation of radioactivity into rRNA was similar even though the normal cells have twice as many rRNA genes. Thus the mechanism which regulates dosage compensation of the rRNA genes operates both in vivo and in vitro.  相似文献   

18.
19.
Summary Cells of embryos carrying a lethal nucleolar mutation have been maintained in vitro for extended periods of time. Normally these mutants live only 9 to 12 days after fertilization but their cells in culture will survive for more than 3 months. The extent of ribosomal RNA (rRNA) synthesis was determined in primary cultures prepared from normal embryos and nucleolar mutants having different numbers of ribosomal RNA genes. We found that the accumulation of radioactivity into rRNA for normal and mutant embryos was similar in vivo and in vitro. In primary cultures of normal embryos which have two nucleoli per cell and mutant embryos which have only one nucleolus per cell, the incorporation of radio-activity into rRNA was similar even though the normal cells have twice as many rRNA genes. Thus the mechanism which regulates dosage compensation of the rRNA genes operates both in vivo and in vitro. This work was supported by Grant GB38651 from the National Science Foundation.  相似文献   

20.
This study focused on nucleolar changes in bovine embryos reconstructed from enucleated mature oocytes fused with blastomeres of morulae or with cultured, serum unstarved bovine fetal skin fibroblasts (embryonic vs. somatic cloning). The nucleotransferred (NT) embryos were collected and fixed at time intervals of 1-2 h (early 1-cell stage), 10-15 h (late 1-cell stage), 22-24 h (2-cell stage), 37-38 h (4-cell stage), 40-41 h (early 8-cell stage), 47-48 h (late 8-cell stage), and 55 h (16-cell stage) after fusion. Immunocytochemistry by light and electron microscopy was used for structure-function characterization of nucleolar components. Antibodies against RNA, protein B23, protein C23, and fibrillarin were applied. In addition, DNA was localized by the terminal deoxynucleotidyl transferase (TdT) technique, and the functional organization of chromatin was determined with the nick-translation immunogold approach. The results show that fully reticulated (active) nucleoli observed in donor cells immediately before fusion as well as in the early 1-cell stage after fusion were progressively transformed into nucleolar bodies displaying decreasing numbers of vacuoles from the 2- to 4-cell stage in both types of reconstructed embryos. At the late 8-cell stage, morphological signs of resuming nucleolar activity were detected. Numerous new small vacuoles appeared, and chromatin blocks reassociated with the nucleolar body. During this period, nick-translation technique revealed numerous active DNA sites in the periphery of chromatin blocks associated with the nucleolar body. Fully reticulated nucleoli were again observed as early as the 16-cell stage of embryonic cloned embryos. In comparison, the embryos obtained by fetal cloning displayed a lower tendency to develop, mainly during the first cell cycle and during the period of presumed reactivation. Correlatively, the changes in nucleolar morphology (desegregation and rebuilding) were at least delayed in many somatic NT embryos in comparison with the embryonic NT group. It is concluded that complete reprogramming of rRNA gene expression is part of the general nuclear reprogramming necessary for development after NT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号