首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and is tolerant to high ethanol concentrations (10%, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C‐based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio‐ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner–Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accurately determined using amino acid labeling. When growth conditions were switched from aerobic to micro‐aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)?1 h?1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64 ± 3 to 25 ± 2 and from 30 ± 2 to 19 ± 2, respectively. The carbon flux under micro‐aerobic growth was directed to ethanol, L ‐lactate (>99% optical purity), acetate, and formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38 ± 0.07 mol mol?1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yield by approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production. Biotechnol. Bioeng. 2009;102: 1377–1386. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
The purpose of the present experiment was to compare 13CO2 recovery at the mouth, and the corresponding exogenous glucose oxidation computed, during a 100-min exercise at 63 +/- 3% maximal O2 uptake with ingestion of glucose (1.75 g/kg) in six active male subjects, by use of [U-13C] and [1,2-13C]glucose. We hypothesized that 13C recovery and exogenous glucose oxidation could be lower with [1,2-13C] than [U-13C]glucose because both tracers provide [13C]acetate, with possible loss of 13C in the tricarboxylic acid (TCA) cycle, but decarboxylation of pyruvate from [U-13C]glucose also provides 13CO2, which is entirely recovered at the mouth during exercise. The recovery of 13C (25.8 +/- 2.3 and 27.4 +/- 1.2% over the exercise period) and the amounts of exogenous glucose oxidized computed were not significantly different with [1,2-13C] and [U-13C]glucose (28.9 +/- 2.6 and 30.7 +/- 1.3 g, between minutes 40 and 100), suggesting that no significant loss of 13C occurred in the TCA cycle. This stems from the fact that, during exercise, the rate of exogenous glucose oxidation is probably much larger than the flux of the metabolic pathways fueled from TCA cycle intermediates. It is thus unlikely that a significant portion of the 13C entering the TCA cycle could be diverted to these pathways. From a methodological standpoint, this result indicates that when a large amount of [13C]glucose is ingested and oxidized during exercise, 13CO2 production at the mouth accurately reflects the rate of glucose entry in the TCA cycle and that no correction factor is needed to compute the oxidative flux of exogenous glucose.  相似文献   

3.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

4.
The insect cell baculovirus expression vector system (BEVS) is one of the most commonly used expression systems for recombinant protein production. This system is also widely used for the production of recombinant virus and virus-like particles. Although several published reports exist on recombinant protein expression using insect cells, information dealing with their metabolism in vitro is relatively scarce. In this work we have analyzed the metabolism of glucose and glutamine, the main carbon and/or energy compounds, of the two most commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and the Trichoplusia ni BTI-Tn-5B1-4 (Tn-5). Radiolabeled substrates have been used to determine the flux of glucose carbon entering the tricarboxylic acid cycle (TCA) and the pentose phosphate (PP) pathway by direct measurement of 14CO2 produced. The percentage of total glucose metabolized to CO2 via the TCA cycle was higher in the case of the Sf-9 (2.7%) compared to Tn-5 (0.6%) cells, while the percentage of glucose that is metabolized via the PP pathway was comparable at 14% and 16% for the two cell lines, respectively. For both cell lines, the remaining 83% of glucose is metabolized through other pathways generating, for example, lactate, alanine, etc. The percentage of glutamine oxidized in the TCA cycle was approximately 5-fold higher in the case of the Tn-5 (26.1%) as compared to the Sf-9 cells (4.6%). Furthermore, the changes in the metabolic fluxes of glucose and glutamine in Tn-5-PYC cells, which have been engineered to express a cytosolic pyruvate carboxylase, have been studied and compared to the unmodified cells Tn-5. As a result of this metabolic engineering, significant increase in the percentage of glucose oxidized in the TCA cycle (3.2%) as well as in the flux through the PP pathway (34%) of the Tn-5-PYC were observed.  相似文献   

5.
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.  相似文献   

6.
A novel method for metabolic flux studies of central metabolism which is based on respirometric (13)C flux analysis, i.e., parallel (13)C tracer studies with online CO(2) labeling measurements is applied to flux quantification of a lysine-producing mutant of Corynebacterium glutamicum. For this purpose, 3 respirometric (13)C labeling experiments with [1-(13)C(1)], [6-(13)C(1)] and [1,6-(13)C(2)] glucose were carried out in parallel. All fluxes comprising the reactions of glycolysis, of TCA cycle, of C3- and C4-metabolite interconversion and of lysine biosynthesis as well as the net reactions in the pentose phosphate pathway could be quantified solely using experimental data obtained from CO(2) labeling and extracellular rate measurements. At key branch points, 68+/-5% of glucose 6-phosphate were observed to be metabolized into pentose phosphate pathway and 48+/-1% of pyruvate into TCA cycle via pyruvate dehydrogenase. The results showed a good agreement with the previous studies using (13)C tracer cultivation and GC/MS analysis of proteinogenic amino acids. Also, respiratory quotient calculated from flux estimates using redox balance showed a high accordance with the value determined directly from the measured specific rates of O(2) consumption and CO(2) production. The results strongly support that the respirometric (13)C metabolic flux analysis is suited as an alternative to the conventional methods to study functional and regulatory activities of cells. The developed method is applicable to study growing or non-growing cells, primary and secondary metabolism and immobilized cells. Due to the non-accumulating nature of CO(2) labeling and instantaneous nature of the resulting fluxes, the method can also be used for dynamic profiling of metabolic activities. Therefore, it is complementary to conventional methods for metabolic flux analysis.  相似文献   

7.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

8.
刘辉  陈宁  温廷益 《微生物学报》2007,47(2):249-253
应用途径分析方法分析了在拟稳态时黄色短杆菌(Brevibacterium flavum)TK0303由葡萄糖发酵生产L-亮氨酸的代谢途径,确定了L-亮氨酸合成的最佳途径和最大理论产率。通过比较途径分析所获得的反应模型,确定了丙酮酸和乙酰辅酶A是L-亮氨酸合成途径的关键节点。在此基础上改变外界环境因子,强化L-亮氨酸生物合成途径中丙酮酸和乙酰辅酶A两个关键节点的代谢流,以期进一步提高L-亮氨酸产率。结果表明,经过谷氨酸以及醋酸铵的调节,代谢途径流量发生显著变化,L-亮氨酸产量有明显提高。  相似文献   

9.
To disclose the addition of some strong promotional amino acids (namely glycine, glutamate, lysine and aspartic acid) is how to improve the glycerol productivity of Candida glycerinogenes. An amino acid addition strategy based on dynamic enzyme activity was applied to improve glycerol productivity and decrease the byproducts formation in a fermentation of C. glycerinogenes in a 7-1 bioreactor. Compared with the control, after feeding glycine, glutamate, lysine and aspartic acid, glycerol productivity obtained an increase of 22.3, 25.6, 23.5 and 28.6%, respectively; meanwhile, the amounts of ethanol, acetic acid and pyruvate decreased largely. Whichever glycine, lysine, glutamate or aspartic acid was fed could elevate the activities of glucose-6-phosphate dehydrogenase (G6PDH), citrate synthase (CIT), triosephosphate isomerase (TPI) and cytoplasmic NAD+AEAAKw-dependent glycerol-3-phosphate dehydrogenase (ctGPD), and reduce the activities of pyruvate kinase (PYK), phosphofructokinase (PFK) and alcohol dehydrogenase (ADH). The reason of glycerol overproduction by the yeasts after feeding glycine, glutamate, lysine or aspartic acid is that the anaplerosis of intermediate metabolites in TCA cycle for amino acid degradation can decrease the flux from Embden-Meyerhof-Parnas (EMP) pathway to TCA cycle and enhance the flux through glycerol biosynthesis pathway. Above all, not only the high active hexose monophosphate (HMP) pathway but also the high dihydroxyacetone phosphate (DHAP) level plays an important role in the high glycerol productivity of C. glycerinogenes. The strategy of amino acid supplement is significant and can be economically implemented by an online process control strategy for higher yield of glycerol in industrial scale. Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 3, pp. 338–343. The article is published in the original.  相似文献   

10.
The nuoA-N gene cluster encodes a transmembrane NADH:ubiquinone oxidoreductase (NDH-I) responsible for coupling redox chemistry to proton-motive force generation. Interactions between nuo and the acetate-producing pathway encoded by ackA-pta were investigated by examining the metabolic patterns of several mutant strains under anaerobic growth conditions. In an ackA-pta strain, the flux to acetate was decreased dramatically, whereas flux to lactate was increased significantly when compared with its parent strain; the fluxes to pyruvate and ethanol also increased slightly. In addition, pyruvate was excreted. A strain carrying the nuo mutation showed metabolic flux distribution similar to the wild type. The ackA-pta-nuo strain showed a different metabolic pattern. It not only exhibited reduced acetate accumulation but also significantly lower ethanol and formate synthesis. Metabolic flux distribution analysis suggests that the excessive carbon flux was redirected at the pyruvate node through the lactate dehydrogenase pathway for lactate formation rather than the pyruvate formate-lyase (PFL) pathway for acetyl-CoA and formate production. The diminished capacity through the formate and ethanol (ADH) pathways was not the result of genetic disruption of functional PFL or ADH production. The introduction of a Bacillus subtilis acetolactate synthase gene returned formate, ethanol, and lactate levels to those of the wild type (ackA(+)pta(+)nuo(+)) strain. Furthermore, transfer of a lactate dehydrogenase mutation yielded a strain producing ethanol as the sole fermentation product. As confirmation of the nuo effect, cultures of the ackA-pta strain, supplemented with an NDH-I inhibitor, produced intermediary levels of flux to ethanol and formate. Mutations in both ackA-pta and nuo are required to significantly reduce the flux through the PFL pathway.  相似文献   

11.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

12.
1. The effects of fasting and fasting followed by refeeding on the activities of the oxidative pentose pathway (OPP) and the tricarboxylic acid cycle (TCA) in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]glucose and [6-14C]glucose, respectively. 2. Refeeding after a fast induced a 2-3-fold increase in glucose flux through the OPP and TCA cycle and the degree of change was similar in colonocytes from the proximal and distal colon. 3. Butyrate at a concentration of 40 mM inhibited the OPP by 20-30% (P less than 0.05) but had no effect on the activity of the TCA cycle. Glutamine at a concentration of 2 mM decreased the glucose flux through both the OPP and the TCA cycle by 30-50% (P less than 0.05). 4. Production of 14CO2 from the oxidation of butyrate or glucose indicated that the former was 5-7 times more active in colonocytes from fasted rats. After refeeding, however, butyrate utilization was similar to fasting values in the proximal colon but significantly lower (P less than 0.05) in the distal colon.  相似文献   

13.
Actinobacillus succinogenes naturally produces high concentrations of succinate, a potential intermediary feedstock for bulk chemical productions. A. succinogenes responds to high CO(2) and H(2) concentrations by producing more succinate and by producing less formate, acetate, and ethanol. To determine how intermediary fluxes in A. succinogenes respond to CO(2) and H(2) perturbations, (13)C-metabolic flux analysis was performed in batch cultures at two different NaHCO(3) concentrations, with and without H(2), using a substrate mixture of [1-(13)C]glucose, [U-(13)C]glucose, and unlabeled NaHCO(3). The resulting amino acid, organic acid, and glycogen isotopomers were analyzed by gas chromatography-mass spectrometry and NMR. In all conditions, exchange flux was observed through malic enzyme and/or oxaloacetate decarboxylase. The presence of an exchange flux between oxaloacetate, malate, and pyruvate indicates that, in addition to phosphoenolpyruvate, oxaloacetate, and malate, pyruvate is a fourth node for flux distribution between succinate and alternative fermentation products. High NaHCO(3) concentrations decreased the amount of flux shunted by C(4)-decarboxylating activities from the succinate-producing C(4) pathway to the formate-, acetate-, and ethanol-producing C(3) pathway. In addition, pyruvate carboxylating flux increased in response to high NaHCO(3) concentrations. C(3)-pathway dehydrogenase fluxes increased or decreased appropriately in response to the different redox demands imposed by the different NaHCO(3) and H(2) concentrations. Overall, these metabolic flux changes allowed A. succinogenes to maintain a constant growth rate and biomass yield in all conditions. These results are discussed with respect to A. succinogenes' physiology and to metabolic engineering strategies to increase the flux to succinate.  相似文献   

14.
The metabolism of Gluconacetobacter oboediens was investigated in relation to different carbon sources for the continuous cultures at the dilution rate of 0.05 h−1. The 13C-flux result implies the formation of metabolic recycles for the case of using glucose and acetate as carbon sources. When glucose and ethanol were used as carbon sources, the specific ethanol uptake rate and the specific acetate production rate increased as the feed ethanol concentration was increased from 40 to 60 g/l, while the specific CO2 production rate and the biomass concentration decreased, where the 13C-metabolic flux result indicates that the glycolysis, oxidative PP pathway, and the tricarboxylic acid (TCA) cycle were less active, resulting in less biomass concentration. The flux result also implies that oxaloacetate decarboxylase flux became negative, so that oxaloacetate is backed up by this pathway, resulting in less activity of glyoxylate pathway. When gluconate was added for the case of using glucose and ethanol as carbon sources, the acetate and cell concentrations as well as gluconate concentrations increased. The glucose and ethanol concentrations decreased concomitantly with the increased feed gluconate concentration. In accordance with these fermentation characteristics, the enzyme activity result indicates that glucose dehydrogenase and glucose-6-phosphate dehydrogenase pathways became less active, while the glycolysis and the TCA cycle was activated as the feed gluconate concentration was increased.  相似文献   

15.
The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.  相似文献   

16.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

17.
1. The effects of fasting and fasting followed by refeeding on the relative activities of the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]pyruvate and [3-14C]pyruvate, respectively. 2. Decarboxylation of pyruvate by the PDH complex exceeded that by the TCA cycle in both fasted and fasted/refed colonocytes, was higher in distal than in proximal colon, and was stimulated by refeeding following a fast. 3. Oxidation of pyruvate by both the PDH complex and the TCA cycle was inhibited by butyrate. 4. Propionate alone had no effect, but synergized with butyrate to further reduce pyruvate decarboxylation by the TCA cycle. 5. Preferential utilization of butyrate by proliferating colonic epithelial cells is postulated to maximize the energy yield and spare pyruvate and its precursors for alternative synthetic roles necessary for active cell division.  相似文献   

18.
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD(+). In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g(-1)) and the lowest xylitol yield (0.05 g g(-1)) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway.  相似文献   

19.
The effects of glucose, vitamins, and DO concentrations on efficient pyruvic acid fermentation were investigated using Torulopsis glabrata IFO 0005, and a novel biphasic culture method was developed on the basis of the metabolic flux analysis. T. glabrata requires the four vitamins nicotinic acid (NA), thiamine hydrochloride (B(1)), pyridoxine hydrochloride, and biotin for cell growth. The deficiency of these vitamins plays an essential role in pyruvate fermentation. In the present study, we considered the effects of the first two vitamins on the pyruvate fermentation. On the basis of several batch and fed-batch experiments, it was found that, as a result of glucose inhibition of cell growth, the initial glucose concentration should be around 30-40 g/L, and the glucose concentration during fermentation should be controlled at high level around 30 g/L. On the basis of an analysis of carbon flux distribution, a biphasic fermentation method was developed where the cultivation started with a high DO (at 40-50% of air saturation) for efficient cell growth and then was reduced to 5-10% for efficient pyruvate production. Since a fair amount of ethanol was formed when the DO concentration was decreased, the addition of NA turned out to be effective in reducing the ethanol formation. This may be due to a relaxing of the requirement for NADH oxidation by the alcohol dehydrogenase pathway. Since B(1) affects both the pyruvate dehydrogenase complex and pyruvate decarboxylase, its initial concentration must be carefully determined by considering both the cell growth and pyruvate production phases.  相似文献   

20.
Protein production of mammalian-cell culture is limited due to accumulation of waste products such as lactate, CO(2), and ammonia. In this study, the intracellular fluxes of hybridoma cells are measured to determine the amount by which various metabolic pathways contribute to the secretion of waste products derived from glucose. Continuously cultured hybridoma cells are grown in medium containing either 1-(13)C-, 2-(13)C-, or 6-(13)C-glucose. The uptake and production rates of amino acids, glucose, ammonia, O(2), and CO(2) as well as the cellular composition are measured. In addition, the (13)C distribution of the lactate produced and alanine produced by the hybridomas is determined by (1)H-NMR spectroscopy, and the (13)CO(2)/(12)CO(2) ratio is measured by on-line mass spectrometry. These data are used to calculate the intracellular fluxes of the glycolysis, the pentose phosphate pathway, the TCA cycle, and fluxes involved in amino acid metabolism. It is shown that: (i) approximately 20% of the glucose consumed is channeled through the pentose shunt; (ii) the glycolysis pathway contributes the most to lactate production, and most of the CO(2) is produced by the TCA cycle; (iii) the pyruvate-carboxylase flux is negligibly small; and (iv) the malic-enzyme flux is estimated to be 10% of the glucose uptake rate. Based on these flux data suggestions are made to engineer a more efficient glucose metabolism in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号