首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1′-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 μM, respectively. The enzyme had no activity with 1-alk-1′-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first ~40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  相似文献   

2.
We developed a continuous spectrophotometric assay of the phospholipase A2 activity specific for choline plasmalogen using rat liver lysoplasmalogenase and horse liver alcohol dehydrogenase as coupling enzymes and Naja naja venom phospholipase A2 as a source of the phospholipase A2 activity. In these coupling reactions, choline lysoplasmalogen is hydrolyzed by lysoplasmalogenase to glycerophosphocholine and free aldehyde. The free aldehyde is quantitatively converted to alcohol by alcohol dehydrogenase with the oxidation of NADH. The disappearance of NADH is measured spectrophotometrically at 340 nm. The assay is sensitive to about 0.2 nmol aldehyde produced/ml/min and also is rapid, convenient, and continuous.  相似文献   

3.
Lysoplasmalogenase (EC 3.3.2.2 and EC 3.3.2.5) is an enzyme that catalyzes hydrolytic cleavage of the vinyl ether bond of lysoplasmalogen, forming fatty aldehyde and glycerophosphoethanolamine or glycerophosphocholine and is specific for the sn-2-deacylated form of plasmalogen. Here we report the purification, characterization, identification, and cloning of lysoplasmalogenase. Rat liver microsomal lysoplasmalogenase was solubilized with octyl glucoside and purified 500-fold to near homogeneity using four chromatography steps. The purified enzyme has apparent K(m) values of ~50 μm for both lysoplasmenylcholine and lysoplasmenylethanolamine and apparent V(m) values of 24.5 and 17.5 μmol/min/mg protein for the two substrates, respectively. The pH optimum was 7.0. Lysoplasmalogenase was competitively inhibited by lysophosphatidic acid (K(i) ~20 μm). The predominant band on a gel at ~19 kDa was subjected to trypsinolysis, and the peptides were identified by mass spectrometry as Tmem86b, a protein of unknown function. Transient transfection of human embryonic kidney (HEK) 293T cells showed that TMEM86b cDNA yielded lysoplasmalogenase activity, and Western blot analyses confirmed the synthesis of TMEM86b protein. The protein was localized in the membrane fractions. The TMEM86b gene was also transformed into Escherichia coli, and its expression was verified by Western blot and activity analyses. Tmem86b is a hydrophobic transmembrane protein of the YhhN family. Northern blot analyses demonstrated that liver expressed the highest level of Tmem86b, which agreed with tissue distribution of activity. Overexpression of TMEM86b in HEK 293T cells resulted in decreased levels of plasmalogens, suggesting that the enzyme may be important in regulating plasmalogen levels in animal cells.  相似文献   

4.
Rat liver peroxisomes oxidized palmitate in the presence of ATP, CoA and NAD+, and the rate of palmitate oxidation exceeded that of palmitoyl-CoA oxidation. Acyl-CoA synthetase [acid: CoA ligase (AMP-forming); EC 6.2.1.3] was found in peroxisomes. The substrate specificity of the peroxisomal synthetase towards fatty acids with various carbon chain lengths was similar to that of the microsomal enzyme. The peroxisomal synthetase activity toward palmitate (40--100 nmol/min per mg protein) was higher than the rate of palmitate oxidation by the peroxisomal system (0.7--1.7 nmol/min per mg protein). The data show that peroxisomes activate long chain fatty acids and oxidize their acyl-CoA derivatives.  相似文献   

5.
Plant constituents such as terpenes are major constituents of the essential oil in Eucalyptus sp. 1,8-Cineole and p-cymene (Terpenes present in high amounts in Eucalyptus leaves) are potential substrates for the CYP family of enzymes. We have investigated tolbutamide hydroxylase as a probe substrate reaction in both koala and terpene pretreated and control brushtail possum liver microsomes and examined inhibition of this reaction by Eucalyptus terpenes. The specific activity determined for tolbutamide hydroxylase in the terpene treated brushtails was significantly higher than that for the control animals (1865+/-334 nmol/mg microsomal protein per min versus 895+/-27 nmol/mg microsomal protein per min). The activity determined in koala microsomes was 8159+/-370 nmol/mg microsomal protein per min. Vmax values and Km values for the terpene treated possum, control, possum and koala were 1932-2225 nmol/mg microsomal protein per min and 0.80 0.81 mM; 1406-1484 nmol/mg microsomal protein per min and 0.87-0.92 mM and 5895-6403 nmol/mg microsomal protein per min and 0.067-0.071 mM, respectively. Terpenes were examined as potential inhibitors of tolbutamide hydroxylase activity. 1,8-Cineole was found to be a competitive inhibitor for the enzyme responsible for tolbutamide hydroxylation (Ki 15 microM) in the possum. In koala liver microsomes stimulation of tolbutamide hydroxylase activity was observed when concentrations of cineole were increased. Therefore, although inhibition was observed, the type of inhibition could not be determined.  相似文献   

6.
Alkenylhydrolase (EC 3.3.2.2; EC 3.3.2.5) has been purified 200-fold to a specific activity of 8.0 mumol/min per mg from rat liver microsomes with 51% of the activity recovered. Purification was accomplished by solubilization of the membrane-associated enzyme with octylglucoside and chromatographic resolution on sequential DEAE cellulose and hydroxylapatite (HPLC) columns in the presence of octylglucoside. The partially purified enzyme, specific for the 2-deacylated plasmalogen, lysoplasmalogen (1-alk-1'-enyl-sn-glycero-3-phosphocholine or -ethanolamine), had no hydrolytic activity with intact plasmalogens or 1-acyl-sn-glycero-3-phosphoethanolamine. Kinetic analyses of enzymic activity demonstrated apparent Km values of 5.5 and 42 microM for 1-alk-1'-enyl-sn-glycero-3-phosphocholine and 1-alk-1'-enyl-sn-glycero-3-phosphoethanolamine, respectively. The Vmax values were 11.7 and 13.6 mumol/min per mg with the choline and ethanolamine substrates, respectively. The optimal pH range was between 6.6 and 7.1 with both substrates; the energy of activation for the purified enzyme was 15,200 cal. The enzyme required no cofactors and was unaffected by low millimolar concentrations of Ca2+, Mg2+, Mn2+ or EDTA. It was inhibited by the sulfhydryl-reacting reagent, p-chloromercuribenzoate. Mono- or diradylglycerophospholipids or sphingomyelin did not affect the enzymic activity at 37 degrees C. Activity of the purified enzyme, destroyed by freezing at -20 degrees C, was preserved if stored at this temperature in the presence of 300-600 microM diradylglycerophosphocholine or 50% glycerol. A continuous spectrophotometric assay, adapted in our laboratory for the assay of liver alkenylhydrolase, facilitated this purification. This is the first reported purification of alkenylhydrolase.  相似文献   

7.
Development of mitochondrial and microsomal choline phosphotransferase in the fetal guinea pig lung was investigated. The activity in fetal mitochondria was more than twice of that in fetal microsomes. However, in adult lung, the enzyme was distributed mostly in microsomes. In fetal lung, both the mitochondrial and microsomal enzyme activity was greatest at approx. 81% of the total gestation period (55 days). The specific activity in the microsomal fraction then declined until term, but increased again in the 24-h newborn from 1.0 to 2.3 nmol/min per mg protein. The activity in the mitochondrial fraction declined after 61 days (2.8 nmol/min per mg) to a minimal level at term (0.6 nmol/min per mg). Although the enzyme activity decreased from day 55 (1.2 nmol/min per mg), the amount of phosphatidylcholine gradually increased between day 55 and term.  相似文献   

8.
Development of mitochondrial and microsomal glycerophosphate acyltransferase in the fetal guinea pig lung was investigated. Mitochondrial and microsomal enzyme activity gradually increased from 45 days to 55 days of gestation. The specific activity in the microsomal fraction (8.2 nmol/min per mg protein) then declined until term, but increased again in the 24-h newborn from 2.5 to 6.1 nmol/min per mg protein. Glycerophosphate acyltransferase activity in the mitochondrial fraction declined after 55 days (3.5 nmol/min per mg) to a minimum level at 60 days (1.8 nmol/min per mg), but increased again in the 24-h newborn (4.0 nmol/min per mg). The specific activity of both mitochondrial and microsomal enzyme declined after 24 h after birth until adult levels were attained. Glycerophosphate acyltransferase activity in mitochondria and microsomes from adult lung was 0.8 and 2.0 nmol/min per mg, respectively. Microsomal enzyme activity was consistently inhibited (over 95%) throughout gestation and adulthood by exposure to any one of several proteinases: trypsin, chymotrypsin, papain, bromelain, pronase and nagarse. Although mitochondrial enzyme activity was also inhibited by these proteinases, there was a continuous increase in proteinase-resistant glycerophosphate acyltransferase activity between 45 days of gestation and term. In contrast, adult mitochondrial enzyme activity was stimulated by all the proteinases studied. These results suggest that early in gestation, glycerophosphate acyltransferase lies more exposed on the cytoplasmic side of the mitochondrial outer membrane and as gestation progresses it becomes embedded into the phospholipid bilayer.  相似文献   

9.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

10.
Rat brain microsomes have the capacity to liberate radioactive free aldehydes from 1-[1-14C]alk-1'-enyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen). Glycerophosphoethanolamine was found using 1-alk-1'-enyl-sn-glycero-3-phospho-[3H]ethanolamine. The ratio of both products released by lysoplasmalogenase action was 1:1. Another enzymic activity could be demonstrated, which hydrolyzes lysoplasmalogen at the hydrophilic part of the molecule, a lysophospholipid phosphodiesterase. Thus, 1-[1-14C]alk-1'-enylglycerol was detected as well as [3H]ethanolamine, again in a molar ratio, from the respective labeled substrates. This enzyme possesses nearly the same affinity toward the substrate as lysoplasmalogenase. Whereas the lysophospholipid phosphodiesterase is totally inhibited in the presence of NaF or EDTA, lysoplasmalogenase activity is not affected by these reagents. 1-[1-14C]Alk-1'-enylglycerol acts also as substrate for lysoplasmalogenase, which liberates radioactive aldehydes at the same rate as from lysoplasmalogen. Because the apparent Km and Vmax values are nearly identical for both substrates, the enzyme activities are inhibited in the same way, and the pH optimum is about 7.2 in both cases, it is concluded that both substrates were attacked by the same enzyme. The enzyme does not differentiate between a substrate substituted at the sn-3 position of glycerol and one that is not. It requires only a free OH group at the sn-2 position. Phosphoethanolamine phosphatase activity was also determined under our experimental conditions.  相似文献   

11.
The metabolism of testosterone (TEST), androstenedione (AD) and progesterone (PROG) was assessed in hepatic microsomal fractions from male sheep. Rates of total hydroxylation of each steroid were lower in sheep liver than in microsomes isolated from untreated male rat, guinea pig or human liver, 6 beta-Hydroxylation was the most important pathway of biotransformation of each of the three steroids (0.80, 0.89 and 0.43 nmol/min/mg protein for TEST, AD and PROG, respectively). Significant minor metabolites from TEST were the 2 beta-, 15 beta- and 15 alpha-alcohols (0.19, 0.22 and 0.17 nmol/min/mg microsomal protein, respectively). Apart from the 6 beta-hydroxysteroid, only the 21-hydroxy derivative was formed from PROG at a significant rate (0.27 nmol/min/mg protein). The 6 beta-alcohol was the only metabolite formed from AD at a rate greater than 0.1 nmol/min/mg protein. Antisera raised in rabbits to several rat hepatic microsomal P450s were assessed for their capacity to modulate sheep microsomal TEST hydroxylation. Anti-P450 IIIA isolated from phenobarbital-induced rat liver effectively inhibited TEST hydroxylation at the 2 beta-, 6 beta-, 15 alpha- and 15 beta-positions (by 31-56% when incubated with microsomes at a ratio of 5 mg IgG/mg protein). IgG raised against rat P450 IIC11 and IIB1 inhibited the formation of some of the minor hydroxysteroid metabolites but did not decrease the rate of TEST 6 beta-hydroxylation. Western immunoblot analysis confirmed the cross-reactivity of anti-rat P450 IIIA with an antigen in sheep hepatic microsomes; anti-IIC11 and anti-IIB1 exhibited only weak immunoreactivity with proteins in these fractions. Considered together, the present findings indicate that, as is the case in many mammalian species, 6 beta-hydroxylation is the principal steroid biotransformation pathway of male sheep liver. Evidence from immunoinhibition and Western immunoblot experiments strongly implicate the involvement of a P450 from the IIIA subfamily in ovine steroid 6 beta-hydroxylation.  相似文献   

12.
Lipid peroxidation in microsomal membranes produces a large number of aldehydes, alcohols, and ketones, some of which have been shown to be cytotoxic. This study has determined the kinetic parameters for the oxidation of aldehyde lipid peroxidation products by purified rat hepatic microsomal aldehyde dehydrogenase (ALDH). Livers were obtained from male Sprague-Dawley rats for preparation of microsomal ALDH which was purified 400-fold. Kinetic parameters, Vmax and V/K, were determined for saturated and unsaturated aldehydes of three to nine carbons in length in the presence of NAD+. Of the aldehydes examined, only acrolein and 4-hydroxynonenal were not oxidized by ALDH. The Vmax values (mumol NADH produced/min/mg protein) increased linearly with carbon chain length and ranged from 6.5 to 23 for the saturated series and 4.0 to 9.0 for the unsaturated aldehydes. The affinity constant V/K (nmol NADH produced/min/mg protein/nmol aldehyde/liter) also increased with carbon chain length and ranged from 12 to 9000 for the saturated aldehydes and 13 to 5300 for the unsaturated aldehydes. These results suggest that microsomal ALDH may serve a biological role for detoxification of reactive aldehydes produced by lipid peroxidation of microsomal membranes.  相似文献   

13.
The flavin monooxygenases (FMO) catalyse the NADPH and oxygen-dependent oxidation of a wide range of nucleophilic nitrogen-, sulfur-, phosphorus-, and selenium heteroatom-containing chemicals, drugs, and agricultural agents. In the present study, sheep liver microsomal FMO activity was determined by measuring the S-oxidation rate of methimazole and the average specific activity obtained from different microsomal preparations was found to be 3.8 +/- 1.5 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 7). The presence of 0.1% Triton X-100 in the reaction mixture caused an increase of specific sheep liver microsomal FMO activity towards methimazole to 6.1 +/- 1.4 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 6). Metabolism of imipramine and chlorpromazine was measured by following the oxidation of cofactor NADPH spectrophotometrically at 340 nm. Sheep liver microsomal FMO activity towards imipramine and chlorpromazine was found to be 10.7 and 12.3 nmol NADPH oxidized min(-1) mg(-1) microsomal protein, respectively. Characterization of sheep liver enzyme was carried out using methimazole as substrate and the maximum FMO enzyme activity was detected at 37 degrees C and at pH 8.0. The apparent K(m) value of sheep liver microsomal FMO for methimazole was 0.118 mM. Effects of the detergents Triton X-100, Cholate, and Emulgen 913, on FMO activity were determined and FMO activity was found to increase with the addition of detergents to the reaction medium. Sheep liver microsomal FMO-catalysed methimazole oxidation was inhibited by imipramine and chlorpromazine when these drugs were used at high concentrations. Western blot-immunochemical analysis revealed the presence of FMO3 in sheep liver microsomes.  相似文献   

14.
《Free radical research》2013,47(6):287-293
An in vitro assay for the simultaneous measurement of lipid peroxidation (LPO) and bilirubin degradation BRD) activities in rat liver microsomes has been developed; a good correlation between the 2 activities was observed (r = 0.78). In the Gunn rat a lipid free diet caused an increase in plasma bilirubin (62.4 ± 25.8%, n = 6) and a concomitant decrease in both hepatic microsomal LPO and BRD to zero. In contrast, on a 25% lipid diet there was a decrease in plasma bilirubin (46.1 ± 3.6%; n = 8) associated with an increase in LPO (1.26 ± 0.11 nmol/min/mg protein, and BRD (0.21 ± 0.6 nmol/min/mg protein). Therefore, in the absence of bilirubin glucuronidation, dietary modulation of plasma bilirubin and lipid peroxidation appear to be closely associated.  相似文献   

15.
Human liver microsomal epoxide hydrase has been highly purified to a specific activity (570 to 620 nmol/min/mg of protein) comparable to that of the rat enzyme using styrene oxide as substrate. Like the purified rat liver microsomal epoxide hydrase, the human enzyme has a minimum molecular weight of 49,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and exhibits broad substrate specificity toward a variety of alkene and arene oxides. Despite these similarities, the human and rat enzymes are different proteins as judged by their immunochemical properties as well as their relative catalytic activities toward certain substrates.  相似文献   

16.
The nematocide, grain fumigant, and gasoline additive 1,2-dibromoethane (DBE) is both a cellular and a genetic toxin that is metabolically activated in rats and mice by mixed function oxidases (MFO) as well as glutathione 5-transferases (GST). The purpose of this study was to determine whether DBE is similarly metabolized and bioactivated by human liver in vitro. Human liver microsomal and cytosolic metabolism of DBE was monitored by the production of aqueous-soluble metabolites from [14-C]-DBE. Reactive intermediates were detected as irreversibly bound adducts to protein or DNA. 1,2-Dibromoethane was metabolized by human liver cytosolic GST, microsomal GST, and microsomal MFO. Cytosolic GST activity (9 +/- 2 nmol/20 min/mg protein) was about four times greater than the other two activities. Only MFO activity resulted in adducts irreversibly bound to protein (1.5 +/- .4 nmol/20 min/mg protein) and was inhibited by the presence of glutathione. Both MFO and GST activity resulted in irreversibly bound adducts to DNA. Microsomal and cytosolic GST activity each produced about twice as many DNA adducts as microsomal MFO activity. These results suggest that human liver, like rat and mouse liver, metabolizes DBE to aqueous-soluble metabolites by both MFO and GST activity. Furthermore, each of these activities produces reactive metabolites that can irreversibly bind to cellular macromolecules.  相似文献   

17.
The developmental profile of prostaglandin (PG)-synthesizing enzymes in liver was investigated in rats from the fetus to 2 years old. In the neonatal period, the activities of PGD2-(2.7 nmol/min/mg protein) and PGE2-(2.2 nmol/min/mg protein) synthesizing enzymes were predominant, whereas PGE2-synthesizing enzyme alone further increased in activity during adult to old ages (5.2-6.1 nmol/min/mg protein). In order to determine the sites of PGs production in rat liver, we prepared hepatocytes and non-hepatocytes by a collagenase digestion method. Regardless of the ages we examined, the major PG produced in the hepatocytes was proved to be PGE2, on the other hand, PGD2 was almost exclusively produced in the non-hepatocytes. These results suggest that each PG may have individual roles in the development of rat liver.  相似文献   

18.
Biotransformation involving nitrogen are of pharmacological and toxicological relevance. In principle, nitrogen containing functional groups can undergo all the known biotransformation processes such as oxidation, reduction, hydrolysis and formation of conjugates. For the N-reduction of benzamidoxime an oxygen-insensitive liver microsomal enzyme system that required cytochrome b5, NADH-cytochrome b5 reductase and a cytochrome P450 isoenzyme of the subfamily 2D has been described. In previous studies it was demonstrated that N-hydroxylated derivates of strongly basic functional groups are easily reduced by this enzyme system. The N-hydroxylation of sulfonamides such sulfamethoxazole (SMX) and dapsone (DDS) to sulfamethoxazole-hydroxylamine (SMX-HA) and dapsone-hydroxylamine (DDS-N-OH), respectively is the first step in the formation of reactive metabolites. Therefore it seemed reasonable to study the potential of cytochrome b5, NADH-cytochrome b5 reductase and CYP2D to detoxify these N-hydroxylated metabolites by N-reduction. Metabolites were analysed by HPLC analysis. SMX-HA and DDS-N-OH are reduced by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D but also only by cytochrome b5 and NADH-cytochrome b5 reductase without addition of CYP2D. The reduction rate for SMX-HA by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 0,65 +/- 0,1 nmol SMX/min/mg protein. The reduction rate by b5 and b5 reductase was 0,37 +/- 0,15 nmol SMX/min/mg protein. For DDS-N-OH the reduction rate by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 1.79 +/- 0.85 nmol DDS/min/mg protein and by cytochrome b5 and NADH-cytochrome b5 reductase 1.25 +/- 0.15 nmol DDS/min/mg protein. Cytochrome b5, NADH-cytochrome b5 reductase are therefore involved in the detoxification of these reactive hydroxylamines and CYP2D increased the N-reduction.  相似文献   

19.
Aldehyde dehydrogenase (ALDH) activity was measured in brain and liver of rainbow trout by using 3,4-dihydroxyphenylacetaldehyde (DOPAL, the biogenic aldehyde derived from dopamine) as the substrate. The amount of the corresponding acid produced was quantified by high-performance liquid chromatography with electrochemical detection. Both in brain and liver, the ALDH activity showed a high affinity for the substrate with an apparent Km of 3.7 microM in brain and 2.4 microM in liver. The kinetic experiments with brain ALDH also indicated the presence of an isozyme with a low affinity for DOPAL with a Km around 150 microM. The Vmax of the liver ALDH activity varied between 179 and 536 nmol/min.g, i.e., about 25-75 times higher than that of the low-Km activity in brain. The ALDH activity showed a maximum around pH 8.5, it was stimulated by Mg2+, and disulfiram was found to be a potent inhibitor of the enzyme. The results suggested that the majority of the ALDH activity was located in mitochondria (60-70% with regard to the brain and 70-80% with regard to the liver), while the remaining activity appeared to be cytosolic in both organs. No microsomal ALDH activity could be found.  相似文献   

20.
J M Lamers  J T Stinis 《Life sciences》1979,24(25):2313-2319
To evaluate Ca2+-uptake in sarcoplasmic reticulum in the hypertrophied rabbit heart, microsomes were prepared from myocardium of rabbits with experimentally induced aortic stenosis. A significant reduction of microsomal Ca2+-uptake was observed in hypertrophied left ventricle, 195±10 compared to 280±18 nmol/mg found in control animals. A similar pattern was observed for the Ca2+-stimulated ATPase (30±9 and 59±10 nmol/min/mg resp.). A minimal activity difference of the microsomal marker enzyme rotenone-insensitive NADPH cyt. c reductase was found (7.77±0.05 and 8.17±0.11 nmol/min/mg resp.). The specific activity of the latter enzyme was 5–6 fold increased in microsomes compared to homogenates in both animal groups, which excludes the possibility of increased amounts of contaminant or nonfunctional protein in sarcoplasmic reticulum prepared from hypertrophied myocardium. In addition the yield of microsomal protein did not differ significantly. Maximal phosphorylation by exogenous cyclic AMP and protein kinase increased Ca2+-uptake in both microsomal preparations (to 287±27 and 375±26 nmol/mg resp. for hypertrophied and control hearts), but Ca2+-transport rate found in pathological hearts remained lower than in controls. These findings indicate that impairment of Ca2+-metabolism in the hypertrophied heart is based on a defective Ca2+-pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号