首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of glutamate.

Abstract

N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use could help reduce environmental contamination as well as increase profitability for the farmers. Quantitative trait loci (QTL) mapping of traits related to N metabolism in the root tissue was undertaken in a maize testcross mapping population grown in hydroponic cultures. N concentration was negatively correlated with root and total dry mass. Neither the enzyme activities nor metabolites were appreciably correlated between the root and leaf tissues. Repeatability measures for most of the enzymes were lower than for dry mass. Weak negative correlations between most of the enzymes and dry mass resulted likely from dilution and suggested the presence of excess of enzyme activities for maximal biomass production. Glutamate synthase and alanine aminotransferase each explained more variation in glutamate concentration than either aspartate aminotransferase or asparagine synthetase whereas glutamine synthetase was inconsequential. Twenty-six QTL were identified across all traits. QTL models explained 7–43% of the variance with no significant epistasis between the QTL. Thirteen candidate genes were identified underlying QTL within 1-LOD confidence intervals. All the candidate genes were located in trans configuration, unlinked or even on different chromosomes, relative to the known genomic positions of the corresponding structural genes. Our results have implications in improving NUE in maize and other crop plants.
  相似文献   

2.

Aims

The objective of this study was to investigate how plants maintain productivity under a limited supply of water and N along the topographical soil water and N gradients in semi-arid forests.

Methods

We investigated forest structure and productivity, N cycling, and water and N use by plants at three different slope positions in a forested area near an arid boundary on a loess plateau in China.

Results

Net primary production (NPP) and aboveground N uptake decreased as soil water and/or N availability decreased on upper slopes; however, NPP and aboveground N uptake were only slightly lower than those of more humid forest ecosystems. Water use efficiency (WUE), N use efficiency (NUE), and fine root biomass increased as soil water and/or N supply decreased with altitude. High NUE was linked to higher N mean residence time, caused by higher N resorption efficiency rather than increasing N productivity.

Conclusions

Our results suggest that NPP and N uptake can be maintained by increasing WUE and NUE and increasing fine root biomass in water and N co-limited semi-arid forest ecosystems near arid boundaries. Such changes in resource use and acquisition strategy can affect production and N cycling via plant-soil feedback systems.
  相似文献   

3.

Aims

The role of different soil types for beech productivity and drought sensitivity is unknown. The aim of this experimental study was to compare mycorrhizal diversity between acid sandy and calcareous soils and to investigate how this diversity affects tree performance, nitrogen uptake and use efficiency (NUE).

Methods

Beech trees were germinated and grown in five different soil types (pH 3.8 to 6.7). One-and-a-half-year-old plants were exposed for 6 weeks to sufficient or low soil humidity. Tree biomass, root tip mycorrhizal colonization and community structure, root tip mortality, leaf area, photosynthesis, nitrogen concentrations, NUE and short-term 15N uptake from glutamine were determined.

Results

Soil type did not affect photosynthesis or biomass formation, with one exception in calcareous soil, where root mortality was higher than in the other soil types. Beech in acid soils showed lower mycorrhizal colonization, higher nitrogen tissue concentrations, and lower NUE than those in calcareous soils. Drought had no effect on nitrogen concentrations or NUE but caused reductions in mycorrhizal colonization. Mycorrhizal species richness correlated with nitrogen uptake and NUE. Nitrogen uptake was more sensitive to drought in calcareous soils than in acid soils.

Conclusions

Beech may be more drought-susceptible on calcareous sites because of stronger decrease of organic nitrogen uptake than on acid soils.
  相似文献   

4.

Key message

In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes.

Abstract

In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.
  相似文献   

5.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

6.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

7.

Background and aims

The inoculation of cereal crops with plant growth-promoting bacteria (PGPB) is a potential strategy to improve fertilizer-N acquisition by crops in soils with low capacity to supply N. A study was conducted to assess the impact of three inoculants on grain yield, protein content, and urea-15 N recovery in maize (Zea mays L.) under Cerrado soil and climate conditions.

Methods

The main treatments included inoculants containing (i) Azospirillum brasilense strain Sp245, (ii) A. brasilense strains AbV5 + AbV6, (iii) Herbaspirillum seropedicae strain ZAE94, and (iv) a non-inoculated control. The subtreatments were (i) urea-N fertilization (100 kg N ha?1) at 30 days after sowing and (ii) no N addition at the stage. To determine fertilizer-N recovery, 15N–labelled urea was applied in microplots.

Results

Inoculants carrying A. brasilense improved urea-15 N acquisition efficiency in maize and also improved grain yield compared to the non-inoculated control, while urea-N fertilization enhanced grain quality by providing higher protein content.

Conclusion

Our results suggest that the inoculation of maize grains with PGPB represents a strategy to improve fertilizer-N recovery and maize yield in Cerrado soil with a low capacity to supply N.
  相似文献   

8.
9.

Background and aims

Biostimulants are natural compounds that enhance plant growth and plant nutrient use efficiency. In this study, biostimulant effects of humic substances (HS) extracted from leonardites were analysed on the metabolism of maize plants grown in hydroponic conditions.

Methods

HS extracted from four leonardites were tested for their auxin-like and gibberellin-like activities. Then, 11 day old maize seedlings were treated for 48 h with five concentrations (0, 0.1, 0.5, 1, and 10 mg C L?1) of HS. After sampling, root growth and morphology, glutamine synthetase (GS) activity, glutamate synthase (GOGAT) activity, total protein content, soluble sugars content, phenylalanine ammonia-lyase (PAL) activity, soluble phenols, and free phenolic acids were analysed.

Results

HS from leonardites had similar spectroscopic pattern, with small differences. The HS from the South Dakota lignite (HS_USA) had more carboxylic groups, whereas the three from Turkish mines had more aromatic and aliphatic structures. HS_USA best enhanced total root growth, root surface area, and proliferation of secondary roots. Plant nutrient use efficiency was enhanced by HS_4, HS_USA and HS_B, with increment of GS and GOGAT enzymes activity and total protein production. HS stimulated also PAL enzyme activity, followed by a higher production of total soluble phenols, p-hydroxybenzoic acid, p-coumarilic acid, and chlorogenic acid.

Conclusion

This study found that, although the activity of the HS depended on the origin of the leonardite, these compounds can be attributed to the biostimulant products, eliciting plant growth, nitrogen metabolism, and accumulation of phenolic substances.
  相似文献   

10.

Objective

The purpose of the article is to evaluate the changes in lipid metabolism in bovine mammary-gland epithelial MAC-T cells after PKM2 knockdown.

Results

MAC-T cells stably expressing low levels of PKM2 were established with lentivirus-mediated small hairpin RNA. Although the knockdown of PKM2 had no effect on MAC-T cell growth, the reduced expression of PKM2 attenuated the mRNA and protein expression of key enzymes involved in sterol synthesis through the SREBP pathway.

Conclusions

The downregulation of PKM2 significantly influenced lipid synthesis in bovine mammary-gland epithelial MAC-T cells. These findings extend our understanding of the crosstalk between glycolysis and lipid metabolism in bovine mammary-gland epithelial cells.
  相似文献   

11.

Introduction

Seed germination is inherently related to seed metabolism, which changes throughout its maturation, desiccation and germination processes. The metabolite content of a seed and its ability to germinate are determined by underlying genetic architecture and environmental effects during development.

Objective

This study aimed to assess an integrative approach to explore genetics modulating seed metabolism in different developmental stages and the link between seed metabolic- and germination traits.

Methods

We have utilized gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) metabolite profiling to characterize tomato seeds during dry and imbibed stages. We describe, for the first time in tomato, the use of a so-called generalized genetical genomics (GGG) model to study the interaction between genetics, environment and seed metabolism using 100 tomato recombinant inbred lines (RILs) derived from a cross between Solanum lycopersicum and Solanum pimpinellifolium.

Results

QTLs were found for over two-thirds of the metabolites within several QTL hotspots. The transition from dry to 6 h imbibed seeds was associated with programmed metabolic switches. Significant correlations varied among individual metabolites and the obtained clusters were significantly enriched for metabolites involved in specific biochemical pathways.

Conclusions

Extensive genetic variation in metabolite abundance was uncovered. Numerous identified genetic regions that coordinate groups of metabolites were detected and these will contain plausible candidate genes. The combined analysis of germination phenotypes and metabolite profiles provides a strong indication for the hypothesis that metabolic composition is related to germination phenotypes and thus to seed performance.
  相似文献   

12.

Background

Maize seedlings are constantly exposed to inorganic phosphate (Pi)-limited environments. To understand how maize cope with low Pi (LP) and high Pi (HP) conditions, physiological and global proteomic analysis of QXN233 genotype were performed under the long-term Pi starvation and supplementation.

Methods

We investigated the physiological response of QXN233 genotype to LP and HP conditions and detected the changes in ion fluxes by non-invasive micro-test technology and gene expression by quantitative real-time polymerase chain reaction. QXN233 was further assessed using vermiculite assay, and then proteins were isolated and identified by nano-liquid chromatography-mass spectrometry.

Results

A negative relationship was observed between Na+ and Pi, and Na+ efflux was enhanced under HP condition. Furthermore, a total of 681 and 1374 were identified in the leaves and roots, respectively, which were mostly involved in metabolism, ion transport, and stress response. Importantly, several key Pi transporters were identified for breeding potential. Several ion transporters demonstrated an elaborate interplay between Pi and other ions, together contributing to the growth of QXN233 seedlings.

Conclusion

The results from this study provide insights into the response of maize seedlings to long-term Pi exposure.
  相似文献   

13.
14.

Key message

QTL for a wheat ideotype root system and its plasticity to nitrogen deficiency were characterized.

Abstract

Root system architecture-related traits (RRTs) and their plasticity to nitrogen availability are important for nitrogen acquisition and yield formation in wheat (Triticum aestivum L.). In this study, quantitative trait loci (QTL) analysis was conducted under different nitrogen conditions, using the seedlings of 188 recombinant inbred lines derived from a cross between Kenong 9204 and Jing 411. Fifty-three QTL for seven RRTs and fourteen QTL for the plasticity of these RRTs to nitrogen deficiency were detected. Thirty of these QTL were mapped in nine clusters on chromosomes 2B, 2D, 3A, 3D, 6B, 6D, 7A and 7B. Six of these nine clusters were also colocated with loci for nitrogen use efficiency (NUE)-related traits (NRTs). Among them, three QTL clusters (C2B, C6D and C7B) were highlighted, considering that they individually harbored three stable robust QTL (i.e., QMrl-2B.1, QdRs-6D and QMrl-7B). C2B and C7B stably contributed to the optimal root system, and C6D greatly affected the plasticity of RRTs in response to nitrogen deficiency. However, strong artificial selection was only observed for C7B in 574 derivatives of Kenong 9204. Covariance analysis identified QMrl-7B as the major contributor in C7B that affected the investigated NRTs in mature plants. Phenotypic analysis indicated that thousand kernel weight might represent a “concomitant” above-ground trait of the “hidden” RRTs controlled by C7B, which are used for breeding selection. Dissecting these QTL regions with potential breeding value will ultimately facilitate the selection of donor lines with both high yield and NUE in wheat breeding programs.
  相似文献   

15.

Background

There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine.

Results

We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes.

Conclusions

Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females.
  相似文献   

16.

Objective

To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing.

Results

Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C.

Conclusion

Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
  相似文献   

17.

Background

Insects are renowned for their ability to survive anoxia. Anoxia tolerance may be enhanced during chilling through metabolic suppression.

Aims

Here, the metabolomic response of insects to anoxia, both with and without chilling, for different durations (12–36 h) was examined to assess the potential cross-tolerance mechanisms.

Results

Chilling during anoxia (cold anoxia) significantly improved survival relative to anoxia at warmer temperatures. Reduced intermediate metabolites and increased lactic acid, indicating a switch to anaerobic metabolism, were characteristic of larvae in anoxia.

Conclusions

Anoxia tolerance was correlated survival improvements after cold anoxia were correlated with a reduction in anaerobic metabolism.
  相似文献   

18.

Key message

We identified 11 SAD genes, and mined their natural variations associated with the conservation of stearic to oleic acid, especially ZmSAD1 supported by both the QTL and an expression QTL.

Abstract

Maize oil is generally regarded as a healthy vegetable oil owing to its low abundance of saturated fatty acids. Stearoyl-ACP desaturase (SAD) is a key rate-limiting enzyme for the conservation of stearic (C18:0) to oleic (C18:1) acid. Here, 11 maize SAD genes were identified to have more divergent functions than Arabidopsis SAD genes. The genomic regional associations in a maize panel including 508 inbred lines identified 6 SAD genes significantly associated (P < 0.01) with the C18:0/C18:1 ratio or the level of C18:0 or C18:1, one gene of which co-localized with a quantitative trait locus (QTL) and 5 of which co-localized with an expression QTL. ZmSAD1, supported by both the QTL and an expression QTL, had the largest effect on C18:0/C18:1. One nonsynonymous single-nucleotide polymorphism in exon 3 and one 5-bp insertion/deletion in the 3′ untranslated region were further shown to contribute to the natural variation in C18:0/C18:1 according to ZmSAD1-based association mapping. Finally, selection tests of ZmSAD1 in teosinte, regular maize, and high-oil maize indicated that ZmSAD1 was not a selection target during the process of maize domestication and high-oil maize development. These results will guide the manipulation of the ratio between saturated and unsaturated fatty acids in maize.
  相似文献   

19.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   

20.

Objectives

To characterize the ent-kaurene oxidase (KO) involved in maize (Zea mays) gibberellin (GA) biosynthesis.

Results

Two putative KO genes were identified in maize based on the homologous alignment. Biochemical characterization indicated that one of them encoded a cytochrome P450 monooxygenase (P450) CYP701A26, which reacted with ent-kaurene to form ent-kaurenoic acid, the key intermediate of GA biosynthesis. CYP701A26 showed constitutive expression in active growing tissues and no inducible expression, which led to putative designation of CYP701A26 as the ZmKO. CYP701A26 exhibited substrate promiscuity to catalyze oxidation of other labdane related diterpenes. Another maize KO homologue, CYP701A43 did not show any catalytic activities on ent-kaurene or other tested diterpenes. It exhibited inducible gene expression and might accept unknown substrates to play roles in specialized metabolism for stress response.

Conclusions

CYP701A26 was characterized to exhibit ent-kaurene oxidase activity with substrate promiscuity and might be involved in maize GA biosynthesis, and its homologue CYP701A43 did not show such function and might play roles in stress response.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号