首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15–30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Evgueni V. Ananiev, deceased Evgueni V. Ananiev and Chengcang Wu contributed equally to this work. Novel materials described in this publication may be available for noncommercial research purposes on acceptance and signing of a material transfer agreement. In some cases, such materials may contain or be derived from materials obtained from a third party. In such cases, the distribution of material will be subject to the requisite permission from any third-party owners, licensors, or controllers of all or parts of the material. Obtaining any permission will be the sole responsibility of the requestor.  相似文献   

2.
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens  相似文献   

3.
Derived from the maize Mu1 transposon, RescueMu provides strategies for maize gene discovery and mutant phenotypic analysis. 9.92 Mb of gene-enriched sequences next to RescueMu insertion sites were co-assembled with expressed sequence tags and analyzed. Multiple plasmid recoveries identified probable germinal insertions and screening of RescueMu plasmid libraries identified plants containing probable germinal insertions. Although frequently recovered parental insertions and insertion hotspots reduce the efficiency of gene discovery per plasmid, RescueMu targets a large variety of genes and produces knockout mutants.  相似文献   

4.
Liu T  Zhang J  Wang M  Wang Z  Li G  Qu L  Wang G 《Plant cell reports》2007,26(12):2091-2099
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.  相似文献   

7.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

8.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.  相似文献   

9.

Key message

Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified.

Abstract

Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.
  相似文献   

10.
Many chemicals, including herbicides, are routinely applied to crops for weed management and food production improvement. However, the intensive use of herbicides could lead eventually to a great environmental threat due to their persistence and accumulation in the ecosystems and contamination of soils. Furthermore, the possible effect of these chemicals on nutrient uptake and assimilation in crops has only recently been discussed. The present study aimed at understanding the effect of the herbicide terbuthylazine (TBA), a herbicide commonly applied to control weeds in leguminous species and triazine tolerant crops, on the capability of maize plants to cope with iron (Fe) shortage. The application of 2 and 5 mg L?1 TBA caused a significant reduction of root Fe concentration. This reduction might be attributed to a decreased release of phytosiderophores, which in turn could be ascribed to a reduced sulfur assimilation. Results provide evidence that TBA impairs Fe uptake and accumulation in non-target plants most likely interacting with sulfur-assimilating enzymes [ATP sulfurylase and O-acetylserine(thiol)lyase].  相似文献   

11.
Genes on chromosomes six (Wsm1), three (Wsm2) and ten (Wsm3) in the maize (Zea mays L.) inbred line Pa405 control resistance to Wheat streak mosaic virus (WSMV), and the same or closely linked genes control resistance to Maize dwarf mosaic virus (MDMV) and Sugarcane mosaic virus (SCMV). Near isogenic lines (NIL) carrying one or two of the genes were developed by introgressing regions of the respective chromosomes into the susceptible line Oh28 and tested for their responses to WSMV, MDMV, and SCMV in the field and greenhouse. F1 progeny from NIL × Oh28 were also tested. Wsm1, or closely linked genes, provided resistance to all three viruses, as determined by symptom incidence and severity. Wsm2 and Wsm3 provided resistance to WSMV. Wsm2 and/or Wsm3 provided no resistance to MDMV, but significantly increased resistance in plants with one Wsm1 allele. NIL carrying Wsm1, Wsm2, or Wsm3 had similar SCMV resistance in the field, but NIL with Wsm2 and Wsm3 were not resistant in the greenhouse. Addition of Wsm2 to Wsm1 increased SCMV resistance in the field. For all viruses, symptom incidence was higher in the greenhouse than in the field, and relative disease severity was higher in the greenhouse for WSMV and MDMV. An Italian MDMV isolate and the Ohio SCMV infected the Wsm1 NIL, while the Ohio MDMV and Seehausen SCMV isolates did not. Our results indicate that the three genes, or closely linked loci, provide virus resistance. Resistance conferred by the three genes is influenced by interactions among the genes, the virus species, the virus isolate, and the environment.  相似文献   

12.
Maize yield increase has been strongly linked to plant population densities over time with changes in plant architecture, but the genetic basis for the plant architecture response to plant density is unknown, as is its stability across environments. To elucidate the genetic basis of the plant architecture response to density in maize, we mapped quantitative trait loci (QTLs) for leaf morphology-related traits in four sets of recombinant inbred line (RIL) populations under two plant density conditions. Forty-five QTLs for six traits were detected in both high and low plant density conditions. Thirty-seven QTLs were only detected when grown under high plant density, and 34 QTLs were only detected when grown under low plant density. Twenty-two meta-QTLs (mQTLs) were identified by meta-analysis, and mQTL1-1, mQTL3-2 and mQTL8 were identified when grown under high and low plant densities, with R 2 of some initial QTLs > 10 %, suggesting the mQTLs might be hot spots of the important QTLs for the related traits under planting density stress conditions. The results presented here provide useful information for further research and the marker-assisted selection of varieties targeting increased plant density and will help to reveal the molecular mechanisms related to leaf morphology in response to density.  相似文献   

13.
14.
SIMILAR TO RCD ONE (SRO) is a small plant-specific gene family, which play essential roles in plant growth and development as well as in abiotic stresses. However, the function of SROs in maize is still unknown. In our study, six putative SRO genes were isolated from the maize genome. A systematic analysis was performed to characterize the ZmSRO gene family. The ZmSRO gene family was divided into two groups according to the motif and intron/exon analysis. Phylogenetic analysis of them with other plants showed that the clades of SROs along with the divergence of monocot and dicot and ZmSROs were more closely with OsSROs. Many abiotic stress response and hormone-induced cis-regulatory elements were identified from the promoter region of ZmSROs. Furthermore, RNA-seq analysis indicated that SRO genes were widely expressed in different tissues and development stages in maize, and the expression divergence was also obviously observed. Analyses of expression in response to PEG6000 and NaCl treatment, in addition to exogenous application of ABA and GA hormones showed that the majority of the members display stress-induced expression patterns. Taken together, our results provide valuable reference for further functional analysis of the SRO gene family in maize, especially in abiotic stress responses.  相似文献   

15.
It is important and meaningful to understand the codon usage pattern and the factors that shape codon usage of maize. In this study, trends in synonymous codon usage in maize have been firstly examined through the multivariate statistical analysis on 7402 cDNA sequences. The results showed that the genes positions on the primary axis were strongly negatively correlated with GC3s, GC content of individual gene and gene expression level assessed by the codon adaptation index (CAI) values, which indicated that nucleotide composition and gene expression level were the main factors in shaping the codon usage of maize, and the variation in codon usage among genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. At the same time, CDS length and the hydrophobicity of each protein were, respectively, significantly correlated with the genes locations on the primary axis, GC3s and CAI values. We infer that genes length and the hydrophobicity of the encoded protein may play minor role in shaping codon usage bias. Additional 28 codons ending with a G or C base have been defined as “optimal codons”, which may provide useful information for maize gene-transformation and gene prediction.  相似文献   

16.

Key message

Using bulked segregant analysis combined with next-generation sequencing, we delimited the Brnye1 gene responsible for the stay-green trait of nye in pakchoi. Sequence analysis identified Bra019346 as the candidate gene.

Abstract

“Stay-green” refers to a plant trait whereby leaves remain green during senescence. This trait is useful in the cultivation of pakchoi (Brassica campestris L. ssp. chinensis), which is marketed as a green leaf product. This study aimed to identify the gene responsible for the stay-green trait in pakchoi. We identified a stay-green mutant in pakchoi, which we termed “nye”. Genetic analysis revealed that the stay-green trait is controlled by a single recessive gene, Brnye1. Using the BSA-seq method, a 3.0-Mb candidate region was mapped on chromosome A03, which helped us localize Brnye1 to an 81.01-kb interval between SSR markers SSRWN27 and SSRWN30 via linkage analysis in an F2 population. We identified 12 genes in this region, 11 of which were annotated based on the Brassica rapa annotation database, and one was a functionally unknown gene. An orthologous gene of the Arabidopsis gene AtNYE1, Bra019346, was identified as the potential candidate for Brnye1. Sequence analysis revealed a 40-bp insertion in the second exon of Bra019346 in nye, which generated the TAA stop codon. A candidate gene-specific Indel marker in 1561 F2 individuals showed perfect cosegregation with Brnye1 in the nye mutant. These results provide a foundation for uncovering the molecular mechanism of the stay-green trait in pakchoi.
  相似文献   

17.
Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.  相似文献   

18.
A large number of maize single nucleotide polymorphism (SNP) candidate sequences have been generated and deposited in public databases. However, very little work has been done to date to comprehensively characterize those SNPs and identify a set of markers, which potentially would have high impact in molecular genetics research and breeding programs. Here we describe a multi-step process to identify highly polymorphic gene-based SNPs among ~130,000 public markers. A set of 695 highly polymorphic SNPs (minor allele frequency value >0.3), identified within exons, 5′ and 3′ untranslated regions of genes, were converted into four of the most popular high-throughput genotyping assays that include Illumina’s GoldenGate and Infinium chemistries, Life Technologies’ TaqMan assay and KBioSciences’ KASPar assay. The term “versatile” was applied to 162 gene-based SNPs that were successfully converted into all four chemistries and had perfect genotypic clustering patterns. This subset of discovered versatile SNP markers represents a universal tool for application in various molecular genetics and breeding projects in maize, where genotyping is based on one of the four above-mentioned chemistries. This study demonstrated that despite the availability of millions of discovered SNPs in maize, only a very small portion of those polymorphisms could be utilized for the development of robust, versatile assays, and has real practical value in marker-assisted selection.  相似文献   

19.
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号