首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
焦振彬  罗毅波 《生物多样性》2021,29(8):1073-3852
石斛属(Dendrobium)种类繁多, 属内物种具有丰富的表型多样性。霍山石斛(D. huoshanense)为我国特有物种, 其与河南石斛(D. henanense)和细茎石斛(D. moniliforme)以及铁皮石斛(D. catenatum)等近缘种表型相似, 在分类处理中存在争议。这种争议很大程度上与植物普遍存在的表型可塑性和代际共存有关。为探究环境和代际间遗传因素对霍山石斛表型性状的影响以及霍山石斛与近缘种的物种边界问题, 本研究观测了安徽省霍山县霍山石斛(野生、林间和温室F1代、林间和温室F2代)、野生河南石斛、细茎石斛和铁皮石斛, 共计16个群体2,279株植株的假鳞茎茎长等12个表型性状; 在种内层面, 首次借鉴生态学同质园实验和遗传学代际间性状比较的方法, 对霍山石斛群体表型性状进行差异显著性检验和95%置信区间比较以及主成分和变异系数等统计学分析。在种间层面, 对霍山石斛与河南石斛和铁皮石斛等近缘种群体表型性状进行比较和分析。结果表明, 环境因素对霍山石斛假鳞茎茎长和假鳞茎直径等具有显著的影响, 代际间遗传因素对霍山石斛假鳞茎直径具有显著的影响。霍山石斛与铁皮石斛和细茎石斛等近缘种群体在假鳞茎茎长、假鳞茎直径、花瓣长和花瓣宽等表型性状方面均存在显著性差异和间隔, 但与河南石斛仅在假鳞茎表型性状方面有显著性差异。我们的研究明确了环境和代际间遗传因素对霍山石斛表型性状的影响程度, 为霍山石斛与近缘种等争议物种的分类和鉴定提供了表型证据。  相似文献   

3.
Puroindolines: the molecular genetic basis of wheat grain hardness   总被引:44,自引:0,他引:44  
The variation in grain hardness is the single most important trait that determines end-use quality of wheat. Grain texture classification is based primarily on either the resistance of kernels to crushing or the particle size distribution of ground grain or flour. Recently, the molecular genetic basis of grain hardness has become known, and it is the focus of this review. The puroindoline proteins a and b form the molecular basis of wheat grain hardness or texture. When both puroindolines are in their `functional' wild state, grain texture is soft. When either one of the puroindolines is absent or altered by mutation, then the result is hard texture. In the case of durum wheat which lacks puroindolines, the texture is very hard. Puroindolines represent the molecular-genetic basis of the Hardness locus on chromosome 5DS and the soft (Ha) and hard (ha) alleles present in hexaploid bread wheat varieties. To date, seven discrete hardness alleles have been described for wheat. All involve puroindoline a or b and have been designated Pina-D1b and Pinb-D1b through Pinb-D1g. A direct role of a related protein, grain softness protein (as currently defined), in wheat grain texture has yet to be demonstrated.  相似文献   

4.
Individual variability in animal movement behaviour is well documented for many species. However, it remains unclear whether this variability reflects genetic variation, environmental variation or a combination of the two. Here, we conduct a cross‐fostering experiment with the aim of investigating the role of these two components in movement patterns during the post‐fledging dependence period and early natal dispersal of 21 eagle owls Bubo bubo. Our experiment showed that cross‐fostering did not influence any of the movement parameters considered. Movement parameters were, however, affected by the age and sex of the owlets. We therefore suggest that individual variability and family resemblance in movement behaviour during the post‐fledging dependence period and early natal dispersal might not be due to the common genetic origin of siblings, but rather that it originates from factors related to the rearing environment.  相似文献   

5.
Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars ‘Trident’ and ‘Molineux’ has been used to construct a linkage map based largely on microsatellite molecular makers. ‘Molineux’ is superior to ‘Trident’ for a number of milling, dough rheology and baking quality characteristics, although by international standards ‘Trident’ would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.  相似文献   

6.
The fact that results of artificial insemination (AI) are declining in highly selected dairy cattle populations has added a renewed interest to the evaluation of male fertility. Data from 42,348 ejaculates collected from 1990 to 2007 on 502 Holstein bulls were analysed in a Bayesian framework to provide estimates of the evolution of semen traits routinely collected in AI centres throughout the last decades of intense selection for production traits and estimate genetic parameters. The traits under consideration were volume (VOL), concentration (CONC), number of spermatozoa per ejaculate (NESPZ), mass motility score (MM), individual motility (IM), and post-thawing motility (PTM). The environmental factors studied were year-season and week of collection, which account for changes in environmental and technical conditions along time, age at collection, ejaculate order, time from previous collection (TPC) and time between collection and freezing (TCF) (only for PTM). Bull's inbreeding coefficient (Fi), bull's permanent environmental and additive genetic effects were also considered. The use of reduced models was evaluated using the Bayes factor. For all the systematic effects tested, strong or very strong evidence in favour of including the effect in the model was obtained, except for Fi for motility traits and TCF for PTM. No systematic time trends for environment or bull effects were observed, except for PTM, which showed an increasing environmental trend, associated with improvements in freezing-thawing protocols. Heritability estimates were moderate (0.16-0.22), except for IM, which presented a low value (0.07). Genetic correlations among motilities and between motilities and CONC were large and positive [0.38-0.87], VOL showed a negative correlation with CONC (-0.13) but with ample HPD 95%. The magnitude of heritabilities would allow an efficient selection if required and grants the use of these traits as indicators of the sperm viability component of bulls breeding soundness.  相似文献   

7.
8.
The relative contribution of genetic and environmental factors in determining variation in life-history traits is of central interest to evolutionary biologists, but the physiological mechanisms underlying these traits are still poorly understood. Here we experimentally demonstrate opposing effects of nutritional stress on immune function, endocrine physiology, parental care, and reproduction between red and black head-color morphs of the Gouldian finch (Erythrura gouldiae). Although the body condition of black morphs was largely unaffected by diet manipulation, red birds were highly sensitive to dietary changes, exhibiting considerable within-individual changes in condition and immune function. Consequently, nutritionally stressed red birds delayed breeding, produced smaller broods, and reared fewer and lower-quality foster offspring than black morphs. Differences in offspring quality were largely due to morph-specific differences in parental effort: red morphs reduced parental provisioning, whereas black morphs adaptively elevated their provisioning effort to meet the increased nutritional demands of their foster brood. Nutritionally stressed genetic morphs also exhibited divergent glucocorticoid responses. Black morphs showed reduced corticosterone-binding globulin (CBG) concentrations and increased levels of free corticosterone, whereas red morphs exhibited reduced free corticosterone levels and elevated CBG concentrations. These opposing glucocorticoid responses highlight intrinsic differences in endocrine sensitivities and plasticity between genetic morphs, which may underlie the morph-specific differences in condition, behavior, and reproduction and thus ultimately contribute to the evolution and maintenance of color polymorphism.  相似文献   

9.
Summary For studying the inheritance of metric traits, diallel cross and factorial mating designs are commonly used. Since factorial mating design is less restrictive in crossing plans, the genetic information drawn from it was compared with that from a diallel cross. The comparison was made using graphical, genetic components and combining ability analyses for grain yield, grain weight and spike length in a field experiment of bread wheat (Triticum aestivum L.). Analyses were made on a nine parent diallel cross and a 4 × 5 factorial mating design which was sampled from the diallel cross. In general, there was a high degree of agreement between the results obtained from factorial mating design and diallel cross analyses showing thereby that the former provides almost equivalent genetic information to the latter.  相似文献   

10.
Elucidating the factors influencing genetic differentiation is an important task in biology, and the relative contribution from natural selection and genetic drift has long been debated. In this study, we used a regression-based approach to simultaneously estimate the quantitative contributions of environmental adaptation and isolation by distance on genetic variation in Boechera stricta, a wild relative of Arabidopsis. Patterns of discrete and continuous genetic differentiation coexist within this species. For the discrete differentiation between two major genetic groups, environment has larger contribution than geography, and we also identified a significant environment-by-geography interaction effect. Elsewhere in the species range, we found a latitudinal cline of genetic variation reflecting only isolation by distance. To further confirm the effect of environmental selection on genetic divergence, we identified the specific environmental variables predicting local genotypes in allopatric and sympatric regions. Water availability was identified as the possible cause of differential local adaptation in both geographical regions, confirming the role of environmental adaptation in driving and maintaining genetic differentiation between the two major genetic groups. In addition, the environment-by-geography interaction is further confirmed by the finding that water availability is represented by different environmental factors in the allopatric and sympatric regions. In conclusion, this study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, which only produced a gradual, clinal pattern of genetic variation. These findings emphasize the importance of environmental selection in shaping patterns of species-wide genetic variation in the natural environment.  相似文献   

11.
Bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), which accounts for most of the cultivated wheat crop worldwide, is a typical allohexaploid with a genome derived from three diploid wild ancestors. Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication. Today, cultivated allohexaploid bread wheat has numerous advantageous traits, including adaptive plasticity, favorable yield traits, and extended end-use quality, which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop. In the past decade, rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop. Here, we summarize recent advances in characterizing major genetic factors underlying the origin, evolution, and improvement of polyploid wheats. We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.  相似文献   

12.
Leaf shape: genetic controls and environmental factors   总被引:2,自引:0,他引:2  
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.  相似文献   

13.
The large and complex genome of wheat makes genetic and genomic analysis in this important species both expensive and resource intensive. The application of next-generation sequencing technologies is particularly resource intensive, with at least 17?Gbp of sequence data required to obtain minimal (1×) coverage of the genome. A similar volume of data would represent almost 40× coverage of the rice genome. Progress can be made through the establishment of consortia to produce shared genomic resources. Australian wheat genome researchers, working with Bioplatforms Australia, have collaborated in a national initiative to establish a genetic diversity dataset representing Australian wheat germplasm based on whole genome next-generation sequencing data. Here, we describe the establishment and validation of this resource which can provide a model for broader international initiatives for the analysis of large and complex genomes.  相似文献   

14.
Summary Genetic control of tiller number, grain number, grain weight, harvest index and grain yield in six generations, along with the biparentals, F3s, F2xparental progeny, and F2xF1 progeny were investigated in an intervarietal cross of bread wheat involving two highly competitive varieties, WL711 and HD 2009. The performance of F1, B1, B2, F2, × p1, F2 × P2 and F2 × F1 progeny was midway between the parents involved with respect to all the evaluated characters. The biparental progeny excelled the mean performance of their corresponding F2 and F3 progeny in tiller number, seed weight and grain yield. The estimates of variance components obtained from the two models deployed were almost similar. Considerable additive genetic variance was observed for grains per spike, seed weight and grain yield while dominance variance was more pronounced for harvest index. The additive-dominance model was adequate for grains per spike and harvest index. Epistatic effects of additive × additive and additive × dominance type for tiller number and grain yield, and of additive × dominance type for seed weight were observed. The digenic epistatic model was inadequate for explaining the nature of gene action for tiller number, seed weight and grain yield. The studies indicated that non-allelic interactions should not be ignored in formulating wheat breeding programmes and that a biparental approach could be adopted as an extremely useful tool for enhancing genetic variability and the creation of transgressive segregants. The usefulness of breeding methodologies utilising a biparental approach is discussed.  相似文献   

15.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

16.
Pletcher SD  Geyer CJ 《Genetics》1999,153(2):825-835
The extension of classical quantitative genetics to deal with function-valued characters (also called infinite-dimensional characters) such as growth curves, mortality curves, and reaction norms, was begun by Kirkpatrick and co-workers. In this theory, the analogs of variance components for single traits are covariance functions for function-valued traits. In the approach presented here, we employ a variety of parametric models for covariance functions that have a number of desirable properties: the functions (1) are positive definite, (2) can be estimated using procedures like those currently used for single traits, (3) have a small number of parameters, and (4) allow simple hypotheses to be easily tested. The methods are illustrated using data from a large experiment that examined the effects of spontaneous mutations on age-specific mortality rates in Drosophila melanogaster. Our methods are shown to work better than a standard multivariate analysis, which assumes the character value at each age is a distinct character. Advantages over existing methods that model covariance functions as a series of orthogonal polynomials are discussed.  相似文献   

17.
Grain protein content (GPC) and flour whiteness degree (FWD) are important qualitative traits in common wheat. Quantitative trait locus (QTL) mapping for GPC and FWD was conducted using a set of 131 recombinant-inbred lines derived from the cross ‘Chuan 35050 × Shannong 483’ in six environmental conditions. A total of 22 putative QTLs (nine GPC and 13 FWD) were identified on 12 chromosomes with individual QTL explaining 4.5–34.0% phenotypic variation. Nine QTLs (40.9%) were detected in two or more environments. The colocated QTLs were on chromosomes 1B and 4B. Among the QTLs identified for GPC, QGpc.sdau-4A from the parent Shannong 483 represented some important favourable QTL alleles. QGpc.sdau-2A.1 and QFwd.sdau-2A.1 had a significant association with both GPC and FWD. The markers detected on top of QTL regions could be potential targets for marker-assisted selection.  相似文献   

18.
The major objective of this study was to determine the possible effects of common genetic and environmental factors among 18 craniofacial anthropometric traits, with special attention to the differences between skeletal and soft-tissue related phenotypes. The studied sample consisted of 122 nuclear families living in Brussels and included 251 males and 258 females aged from 13 to 72 years. Univariate and bivariate quantitative genetic analyses were performed using a variance components procedure implemented in SOLAR software.All phenotypes were significantly influenced by additive genetic factors with heritability estimates ranging from 0.46 (nose height) to 0.72 (external biocular breadth). Sex, age and their interactions explained 7-46% of the total phenotypic variance of the traits. Bivariate analysis revealed that several traits share a common genetic and/or environmental basis while other traits show genetic and environmental independence from one another. More and greater genetic and environmental correlations were observed among skeletal phenotypes, than among soft-tissue traits and between both categories. Apart from the tissue composition, other characteristics of the craniofacial morphology such as the orientation (e.g. heights, breadths) have shown to be important factors in determining pleiotropy and common environmental effects between some pairs of traits. In conclusion, the results confirm that overall head configuration is largely determined by additive genetic effects, and that common genetic and environmental factors affecting craniofacial size and shape are stronger for the skeletal traits than for the soft-tissue traits.  相似文献   

19.
Rice grain discoloration (RGD) is a disease of complex aetiology for which there are no resistant varieties. Due to the need to better define the environmental conditions that favour the disease, the aims of this work were to (i) identify the predominant fungi associated, (ii) determine the meteorological variables most closely related, and (iii) develop preliminary weather-based models to predict binary levels of RGD incidence. After analysing 123 rice grain samples under natural infection conditions from rice-cropping regions throughout Corrientes province, Argentina, we found that RGD was mainly associated with Alternaria padwickii (14.2%) and Microdochium albescens (13.7%). The strongest associations between weather variables and RGD incidence were observed in a susceptible critical period (Scp) that extended from the rice flowering stage until 870 accumulated degree days (Scp lasting 32 days, ±7 days). The binary response logistic model including the weather variables DPrecT (which combined the effect of the simultaneous daily occurrence of precipitation lower than 12 mm and air temperature between 13 and 28°C), and DDMnT (sum of the exceeding amounts of daily min temperature from 23°C), was the most appropriate, showing prediction accuracy (PA) values of 84.6%. The univariate model that included DPrecT presented a PA of 82.1%. The logistic regression techniques here used to develop weather-based models to estimate the probabilities of occurrence of binary levels of RGD can not only help to clarify and quantify the environmental effect on the development of RGD but also be useful tools to be included in future management strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号