首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of estrogen binding components (EBC) in intestinal mucosa of female rats was investigated by competitive-binding assay using radiolabelled and nonlabelled estradiol 17 beta (E2). EBC were found exclusively in the nuclear fraction and were absent from the cytosolic and from the microsomal fractions. Two types of nuclear EBC with different binding characteristics and capacities were found: Kd1 = 4.8 +/- 0.8 nM, n1 = 18.4 +/- 4.2 fmol/mg protein (n1 = 83.4 +/- 12.5 fmol/mg DNA) and Kd2 = 31.1 +/- 6.8 nM, n2 = 91.1 +/- 18.5 fmol/mg protein (412.7 +/- 80.0 fmol/mg DNA). Type 1 component showed slightly greater affinity for estrogens as compared to progesterone and dexamethasone whereas type 2 component bound other competitors with even greater affinity than E2.  相似文献   

2.
A rat transplantable pituitary tumor, MtT/F84, grows much faster in E2 treated rats than in normal females, but is much retarded in thyroidectomized rats. Triiodothyronine (T3) administration in a drinking water increased the tumor growth by the dose dependent manner. The tumor contained both estrogen receptor (ER) and T3 receptor. ER levels both in the nuclei and cytosols elevated 2 to 3 times by the T3 administration compared to those of control. E2 administration promotes the growth of MtT/F84 through elevation of nuclear ER level. T3 may directly elevate cellular ER level and thus it may enhance estrogenic actions including the tumor growth.  相似文献   

3.
Although the hamster is frequently used as an experimental animal for studying reproductive neuroendocrinology and sex behavior, estrogen receptors (ER) in the central nervous system have not been fully characterized. Using Sephadex LH-20 gel filtration and DNA-cellulose affinity chromatography, estrogen binding macromolecules having the physicochemical properties of classical ER were identified in cytosolic and nuclear extracts of brain tissues. These receptors exhibited high affinity for estradiol (Kd = 10(-9) M), limited capacity (30-50 fmol/g tissue), and estrogen specificity; however, competition studies indicate that brain and uterine ER have different binding kinetics. The neuroanatomic distribution of ER was similar in males and females with highest levels in the limbic brain and consistently low levels in remaining forebrain and mid/hindbrain. No sex differences in receptor number or other binding parameters were evident. Sucrose gradient centrifugation showed that cytosolic ER sedimented in the 7-8S region of a 5-20% linear gradient (no salt), whereas nuclear ER had a sedimentation coefficient of 5S under high ionic strength. On DNA-cellulose affinity columns, these receptors had an elution maximum of 0.18 M NaCl. After a single injection of estradiol, nuclear ER increased and cytosolic ER were depleted. The lower estradiol binding affinity and receptor levels in hamster brain as compared to the rat are consistent with observed species differences in neural sensitivity to estrogen. We expect these data in hamsters, a markedly photosensitive species, to provide a basis for future studies examining the role of receptors in mediating the effects of day-length on steroid dependent feedback and behavioral responses.  相似文献   

4.
Effects of clomiphene citrate (clomiphene) on the pituitary gland of chronically estrogenized ovariectomized rats were investigated. Estradiol-17 beta (E2) pellet implanted subcutaneously in castrated rats for 7 days caused significant increases in pituitary weight and serum prolactin (PRL) level but suppressed serum luteinizing hormone (LH) level. In the estrogenized rats about 40% of estrogen receptor (ER) found in whole pituitary cells (65 +/- 7 fmol/10 mg tissue) was observed in the nucleus, while 60% of ER was present in the cytosol fraction. A single injection of 5 micrograms E2 translocated cytosol ER immediately to nuclear compartment; amounts of ER found in cytosol and nuclear fractions were 16 +/- 1 and 37 +/- 4 fmol/10 mg tissue, respectively, at 1 h. However, the distribution of ER returned to the pre-injection level within 4 h. In the non-estrogenized castrated rats, the nuclear retention of ER was significantly longer than that in the estrogenized rats. A single administration of 200 micrograms clomiphene in the estrogenized rats, on the other hand, increased nuclear ER gradually. Nuclear ER reached the peak level at 4 h (62 +/- 5 fmol/10 mg tissue) and the level remained almost unchanged for 24 h. Cytosol ER decreased and reached a nadir at 4 h (4.3 +/- 0.3 fmol), and the replenishment of cytosol ER could not be detected for 24 h. Similar patterns of cytosol and nuclear ER following the clomiphene injection were also found in the castrated rats. The clomiphene administration in the estrogenized rats resulted in a significant reduction of the pituitary weight 48 h after the administration. The present results seem to show the antiestrogenic action of clomiphene in the pituitary gland.  相似文献   

5.
Estradiol down-regulation of the rat uterine estrogen receptor   总被引:3,自引:0,他引:3  
We have previously shown that neonatal exposure of rats to pharmacologic doses of diethylstilbestrol via daily injections resulted in a significant decrease in the estrogen-binding capacity of the uterine estrogen receptor (ER). In this study, we examined the effects of physiologic and pharmacologic doses of estradiol (E2) administered to adult ovariectomized rats via Silastic implants. Two days after implantation, uteri were removed, weighted, and homogenized, and ER levels were determined in the supernatant (hydroxylapatite assay) and low-speed pellet (nuclear exchange assay). Implants containing E2 concentrations of 0.005 or 0.05 mg/ml increased cytosolic but not total ER-binding capacity, whereas 0.5 or 5.0 mg of E2/ml implants decreased the binding capacity of cytosol ER to 40% and total ER to 50% of control values. The 0.005-mg/ml dose increased cytosol ER without increasing uterine weight; all higher doses significantly increased uterine weight. Determination of ER protein by an ER radioimmunoassay showed the same extent of reduction of ER concentration as the binding assays, demonstrating that the loss in E2 binding capacity is homologous down-regulation. The down-regulation of ER was maximal at 24 hr and was completely reversible after implant removal, although the time required to recover from down-regulation was dose dependent. Uterine weight also returned to control levels slowly after implant removal. Neither the sedimentation rate of the down-regulated ER nor the Kd of the cytosolic ER changed following long-term implantation; however, the Kd of the nuclear ER decreased significantly. This is the first demonstration of in vivo homologous down-regulation of uterine ER. ER down-regulation may play a role in several biologic processes.  相似文献   

6.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

7.
In order to assess the rat prostate as a target tissue for receptor-mediated estrogen action, we have studied the properties and distributions of estrogen binding sites in the dorsolateral (DLP) and ventral (VP) prostate. Saturation analyses over a wide range of [3H]estradiol ([3H]E2) concentrations (0.5-100 nM) revealed two distinct types of binding sites in the cytosol and nuclear fractions of DLP of intact rats. The high affinity (type I) estrogen binding sites saturated at 2-4 nM of [3H]E2 and had a capacity of 170 fmol/mg DNA in the cytosol and 400 fmol/mg DNA in the nuclei. DLP type I sites had ligand specificity similar to that described for the classical estrogen receptors (ERs) found in female target tissues. The moderate affinity (type II) estrogen binding sites saturated at 15-30 nM of [3H]E2 and had a capacity of 850 fmol/mg DNA in the cytosol and 1600 fmol/mg DNA in the nuclei. DLP type II sites shared some characteristics of the type II ERs described for the rat uterus; they were estrogen specific, heat labile, and sensitive to reducing agents such as dithiothreitol. Saturation analyses on VP cytosols and nuclear fractions revealed only high affinity sites but no moderate affinity sites in the tissue preparations. Our finding that prostatic type II estrogen binding sites are present exclusively in the DLP supports the concept that basic biological differences exist between the two major prostatic lobes of the rat. Furthermore, our findings may help elucidate the observed differences in susceptibility between these two lobes to the hormonal induction of proliferative prostatic lesions.  相似文献   

8.
We transplanted a pilosebaceous tumor developed on the sidegland of Suncus murinus to male nude athymic (BALB/c-nu/nu) mice. This tumor can be transplanted to female hosts as well, with a lower rate of graft-taking and slower growth rate. In this study we demonstrated the presence of macromolecules which specifically bind to estrogen. Measurement of 17 beta-estradiol (E2) binding by a dextran-coated charcoal assay revealed that the number of binding sites and the dissociation constant were 22.3 +/- 4.6 fmol/mg protein and 1.4 +/- 0.24 X 10(-9) M, respectively. This binding was specific for E2 and diethylstilbestrol (DES). Sucrose gradient centrifugation of the [3H]E2-labeled cytosol yielded a sharp peak of radioactivity at 3.5S-4S under high salt conditions and a 9S peak with a shoulder at 3.5S under low salt conditions. This 3.5S shoulder was due to dissociation of [3H]E2 from the 9S peak during the centrifugation, since only the 9S peak was obtained by postlabeled density gradient analysis. An assay of the in vivo binding of [3H]E2 showed significant radioactivity in the nuclear extract from the tumor. This nuclear uptake was markedly decreased by simultaneous administration of 100-fold excess of E2. In tumor-bearing castrated nude mice, 1-100 micrograms/day of E2 did not affect tumor growth, whereas it counteracted the stimulative effect of testosterone propionate.  相似文献   

9.
Gonadal steroids in the salmonid brain, acting through cellular receptors, may be responsible for the modulation of neuronal activity and organization of reproductive behaviors. We report our findings on the use of [3H]17beta-estradiol (E2) to identify intracellular estrogen receptors (ERs) in the hypothalamus of juvenile rainbow trout, Oncorhynchus mykiss. Specific binding (B(SP)) of [3H]E2 was tissue dependent between 0.5 and 2.25 hypothalamus equivalents for cytosol and nuclear extract preparations, respectively. B(SP) in cytosol fractions increased with time and reached maximum levels (4.18 nM) at 2.5 h incubation; by contrast, B(SP) in nuclear extract increased with time to achieve maximum levels (3.9 nM) by 2 h incubation. The association rate constants (k(+1)) for cytosol and nuclear extract preparations were 1.10 +/- 0.02 x 10(8) M(-1) min(-1) and 1.27 +/- 0.04 x 10(8) M(-1) min(-1), respectively. Equilibrium bound B(SP) dissociated from cytosol preparations with a half life (t1-2) of 42 min and a dissociation rate constant (k(-1)) of 1.01 +/- 0.03 min(-1). B(SP) dissociated from nuclear extract preparations with a t1-2 = 45 min and k(-1)= 0.92 +/- 0.01 min(-1) x B(SP) was saturable in both extract preparations with a calculated equilibrium dissociation constant (Kd) of 1.46 +/- 0.1 nM (cytosol) and 2.37 +/- 0.2 nM (nuclear), and a maximum number of binding sites (B(MAX)) of 50.85 +/- 3.2 fmol mg(-1) protein and 61.74 +/- 2.65 fmol mg(-1) protein, respectively. In both preparations, B(SP) was differentially displaced by structurally similar compounds with a rank order of potency of E2 > estrone > estriol > 17alpha-ethynyl estradiol > testosterone > progesterone = tamoxifen > cortisol > dexamethasone > > beta-sitosterol. These properties of specifically bound [3H]E2 suggest the presence of an ER in the hypothalamus of juvenile rainbow trout comparable with ERs identified in salmonid liver.  相似文献   

10.
11.
Estrogen receptors (ER) and androgen receptors (AR) were evaluated in the hepatic cytosol from cynomolgus macaques to determine if there were differences associated with gender and endogenous hormone secretion. Saturable, high affinity binding (Kd = 0.2-0.8 nM) was demonstrated for both ER and AR from either male or female monkeys. Displacement of tritiated estradiol from the ER was estrogen specific (including ethinyl estradiol). Both androgens and the synthetic progestins (levonorgestrel and norethindrone) displaced tritiated mibolerone from the AR. Both 8S and 4S molecular forms of ER and AR were demonstrated on 5-20% sucrose density gradients. The ER levels were higher in females in the follicular phase of the menstrual cycle (40.5 +/- 1.9 fmol/mg protein) than levels in males (26.4 +/- 4.8 fmol/mg protein; P less than 0.01) or levels in luteal phase females (31.8 +/- 2.4 fmol/mg protein; P less than 0.05). AR levels were not different between females during different phases of the menstrual cycle (65.8 +/- 4.6 and 69.5 +/- 4.3 fmol/mg protein, follicular and luteal, respectively), but there was a tendency (P less than 0.10) for the levels in males (54.4 +/- 6.6 fmol/mg protein) to be lower than female levels. The demonstration of saturable, high affinity binding of androgens and estrogens in liver tissue of these primates, along with differences associated with gender and the stage of the menstrual cycle, suggests that hepatic receptors are functional and may play an important role in hepatic protein secretion.  相似文献   

12.
Estradiol (E2) mediates many of the activational effects of testosterone (T) on masculine reproductive and aggressive behaviors. Using Japanese quail (Coturnix coturnix japonica) as an animal model, together with a newly devised procedure for quantifying aggressiveness, we recently showed that aggression is E2-dependent and that individual differences in behavioral intensity are correlated with aromatase in the hypothalamus/preoptic area (HPOA). In this study we characterized estrogen receptors (ER) in quail brain and tested the hypothesis that aromatase in brain regulates T-induced behavioral responsiveness by regulating the quantity of E2 available for receptor binding. Based on standard binding assays and Sephadex LH-20 chromatography, quail brain ER was shown to be estrogen-specific, of high affinity (Kd = 0.88 nM), and of limited capacity with highest concentrations in limbic brain areas (Bmax 23-27 fmoles/gm HPOA). In addition, this ER adhered to DNA-cellulose under activating conditions. The quantitative relationship between aromatization, ER, and aggressiveness was tested in reproductively inactive (nonaggressive) males by treatment with T +/- the aromatase inhibitor 4-hydroxyandrostenedione (OHA). After 5 days, T markedly stimulated aggressiveness, and elevated aromatase and nuclear (occupied) ER in HPOA. Simultaneous treatment with OHA blocked effects on aggressiveness and aromatase, and lowered nuclear ER, but increased cytosolic (empty) ER. Total ER (nuclear plus cytosolic) was higher after T treatment whether or not OHA was administered, suggesting that androgen per se induces ER in quail HPOA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of this study was to partially characterize the steroid binding activity of murine renal tumor cells in continuous culture. The steroid receptor content of a cloned renal tumor cell line (RAG) and a subline RAG-2 was examined by sucrose gradient analysis, hydroxylapatite and dextran-coated charcoal methods. The RAG cells lacked estrogen- and progestin-binding activity, whereas specific 5 alpha-dihydrotestosterone (DHT) and dexamethasone (Dx) binding activities were detected as 8S peaks on low salt gradients. The specificity of DHT binding was examined by sucrose gradient analysis: DHT, R1881 and ORG2058 all completely inhibited [3H]DHT binding whereas diethylstilbestrol and Dx were ineffective. The androgen receptor content of the RAG cells was approx. 15 fmol/mg cytosol protein by the hydroxylapatite-filter assay, with an estimated Kd for methyltrienolone (R1881) of 5 nM at 0 degrees C. Scatchard analysis of [3H]Dx binding by RAG cytosol showed a Kd of 6 nM for Dx and 44 nM for corticosterone at 0 degrees C. Glucocorticoid receptor levels were estimated to be 182 fmol/mg cytosol protein by dextran-coated charcoal assay. Metabolism of [3H]testosterone and [3H]DHT by RAG cells was examined 1, 4 and 6 h after exposure to labeled hormone. Radioactive DHT was the primary intracellular metabolite recovered after exposure to [3H]testosterone. There was little conversion of DHT to androstanediol.  相似文献   

14.
S A Tonetta  J J Ireland 《Steroids》1983,42(4):427-440
Nuclear and cytoplasmic binding sites for estradiol (E2-17 beta) in granulosa cells of immature rats were characterized. These binding sites for estrogen were high affinity, low capacity with an affinity constant (Kd) of 1.9 X 10(-10)M (binding capacity, Ro = 80 pM) for nuclear sites and a Kd = 3.5 X 10(-10) M (Ro = 45 pM) for cytosol sites. Binding was specific for biologically active estrogens. The estrogen receptor in granulosa cells is a protein and heat-labile as treatment with protease or pre-incubation at 37 degrees C for 1 h significantly diminished binding. RNase and DNase had no effect on estrogen binding. Sedimentation coefficients for nuclear and cytosol binding components were 5S and 8S respectively, similar to values obtained with uteri. Finally, translocation was demonstrated after a s.c. injection of E2-17 beta. Forty-five minutes post-injection, cytosol binding sites for estradiol were depleted concomitant with accumulation of nuclear binding sites. We concluded that granulosa cells of immature rats have binding sites specific for estradiol which have characteristics similar to the classical estrogen receptor in uteri.  相似文献   

15.
E2 (1 nM) stimulated the synthesis of PRL in GH3 cells. OH TAM (100 nM) did not affect basal PRL synthesis, but completely inhibited the increase produced by 1 nM E2. [3H]E2 and [3H]OH TAM both bound to the cytosolic 8S ER and these were split into 4S subunits on sucrose gradients containing 0.4 M KCl. By comparison, ER complexes extracted from nuclei of GH3 cells cultured in media containing [3H]E2 or [3H]OH TAM both sedimented at 5S on sucrose gradients containing 0.4 M KCl. Both 4S and 5S ER complexes were recognized by the monoclonal antibody D547 which increased their sedimentation coefficients to 8-9S. In contrast, a polyclonal antibody raised to calf uterine ER in the goat, interacted with the cytosolic ER so that the binding of [3H]E2 was inhibited but the binding of [3]OH TAM was only slightly reduced. A molecular model is proposed to describe the binding of E2 and OH TAM to the ER that might contribute to an understanding of estrogen and antiestrogen action.  相似文献   

16.
A receptor for aldosterone was studied in the cytosol of rectal mucosa of two sisters (M.A., M.B.) with the clinical manifestations of pseudohypoaldosteronism (PHA). Compared to age matched controls the patients showed a decreased affinity for aldosterone (M.A. Kd1: 0.18 nM, Kd2: 4.55 nM; Nmax1: 0.185 fmol/mg cytosol protein (CP), Nmax2: 3.12 fmol/mg CP, respectively). In an attempt to find an explanation for the phenomenon of stress-induced electrolyte imbalance in PHA patients an experimental set up was designed, using aldosterone antibody material as artificial aldosterone receptor. Specific binding was evaluated in addition with and without a 25-100-fold molar excess of dexamethasone (DEX) in order to overcome the glucocorticoid affinity of the aldosterone receptor, a phenomenon proposed to be the cause for the severe consequences of stress in some patients with PHA. The aldosterone antiserum showed two binding sites, similar to the natural receptor (Kd1: 0.15 nM, Kd2: 1.30 nM; Nmax: 30 fmol/mg CP and 130 fmol/mg CP, respectively). Under the influence of DEX the high affinity binding site (Kd1) was occupied by the glucocorticoidanalogon (Kd: 1.30 nM; Nmax: 125 fmol/mg CP). In conclusion, in stress situations, with increased quantities of glucocorticoid circulating, the high affinity binding site of the aldosterone receptor might be occupied by the glucocorticoids, while the low affinity binding site in PHA patients might not have sufficient binding capacity to maintain the electrolyte balance.  相似文献   

17.
Receptors for testosterone (T) and dihydrotestosterone (DHT) as well as the tissue specific androgen-5 alpha-reductase (A5R) were studied in the foreskin of 52 healthy boys (ages 1-14 years), in order to gain molecular endocrinological data and information about the ontogeny and cytogeny, respectively, of androgen specific target organs. Enzyme determinations were carried out in tissue homogenates by an enzyme kinetic method for the evaluation of Km- and Vmax-values. Reactions velocities were calculated from the turn over rates of T to DHT, 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3,beta,17 beta-diol. The precursor (T) was used in increasing concentrations, ranging from 8 to 208 nM. Separation of reaction products was done by thin-layer chromatography and verification of specific radioactivity of metabolites by means of radio gas chromatography on capillary columns. Results of the enzyme analyses: Km = 94.9 +/- 3.5 [nM], and Vmax = 15.8 +/- 1.9 [pmol/mg.h]. Receptors were examined in the cytosolic and nuclear fractions of the tissue specimens. Saturation analyses and calculation of binding data led to specific receptors for T and DHT in the cytosolic (T: Kd = 1.56 +/- 0.12 [nM], Nmax = 122.4 +/- 11.6 [fmol/mg]; DHT: Kd = 1.9 +/- 0.1 [nM], Nmax = 493.3 +/- 77.8 [fmol/mg]) and the nuclear fractions (T: Kd = 1.43 +/- 0.13 [nM], Nmax = 28.7 +/- 3.5 [fmol/mg]; DHT: Kd = 1.37 [nM], Nmax = 196.9 +/- 22.5 [fmol/mg]), Kd-values proved to be quite homogenous (coeff. var. = 0.15-0.21), whereas maximum specific receptor binding activities (Nmax) showed age dependent fluctuations (coeff. var. = 0.35-0.45). Binding capacities of both T- and DHT-receptor, respectively, in cytosolic and nuclear fractions showed peak values in the age group 10-11 years and additional "spikes" of binding rates at age 4-5 years. It is noteworthy that Vmax-values also reached maximum levels in the latter age group. Concerning the ontogeny of the androgen receptor a change of binding properties from the cytosol to the nuclear fraction was observed with the onset of puberty. A comparison of enzyme- and receptor data lead to the theory, that subcellular hormone actions depend on interrelational regulatory mechanisms between androgen receptors (T as well as DHT) and specific enzyme systems (A5R).  相似文献   

18.
The binding of [3H]estradiol and [3H]hydroxytamoxifen to the cytosol and microsomal fractions of several human breast tumors was investigated. By washing microsomal membranes with a KCl-free or a KCl-containing medium we could distinguish between intrinsic, extrinsic and contaminant estradiol binding sites in these membranes. We observed that treatment of the microsomes with low salt medium removes about 80% of the total estradiol binding sites, whereas 20% are not extractable. The concentration of unextractable [3H]estradiol binding sites in the microsomes varies in proportion to the level of cytosolic estrogen receptors (ER). About 10% of the total extranuclear specific estrogen binding sites was consistently found tightly associated to the microsomal fraction, which displays an affinity for estradiol (Kd = 0.1-0.6 nM) similar to that of the cytosolic ER. The displacement of [3H]estradiol with unlabeled hormone or with the antiestrogens, nafoxidine, enclomiphene and tamoxifen (TAM) exhibits identical IC50 values either in the cytosol or in the microsomal membranes. On the other hand, the microsomal fraction of breast tumors also binds [3H]hydroxyTAM, but with higher capacity and lower affinity than those of the cytosolic fraction. Furthermore, we did not observe correlation between the concentrations of ER and of antiestrogen binding sites (AEBS) in the tumors. These results indicate that microsomal membranes of human breast tumors contain estrogen binding sites which may be related to the cytosol ER recycling and that specific AEBS are predominantly localized in this membrane system. Furthermore, it is shown that the magnitude of estradiol binding to microsomes depends on the ER positive degree of the tumors, whereas the magnitude of the antiestrogen binding to the microsomes is independent of the ER status of the tumors.  相似文献   

19.
An in vitro study of the nuclear uptake of estradiol 17 beta (E2) in mammary tumor tissue utilized 16 specimens taken at mastectomy. Dextran/charcoal assay of cytosol receptor was used in this tissue slice technique, based on uptake of tritiated E2. 9 tumors had receptor concentrations from 7.3-496 fmol/mg of cytosol protein. No nuclear uptake was detected in 4 of these tumors, in spite of the fact that 1 of these had the highest concentration of cytosol receptor measured. The remaining 7 tumors contained no cytosol receptor and showed no detectable nuclear uptake of E2. 3 cases yielded protein-bound radioactivity in the column eluate (Sephadex) sufficient to allow sucrose gradient analysis. The major radioactive peak of 1 of these moved slightly faster than bovine serum albumin, i.e., in the 5S region charactersitic of the nuclear receptor found in other estrogen-sensitive tissues. It is conclded that hormone independency in mammary tumors containing E2 cytosol receptor may be caused by failure of translocation or binding of E2-receptor complex to the cell nucleus.  相似文献   

20.
Previous studies from our laboratories demonstrated that cells from a human endometrial adenocarcinoma cell line (Ishikawa) responded to estradiol whereas cells from another endometrial cancer line (HEC-50) did not. In an attempt to identify factors responsible for the observed estrogen insensitivity we compared the characteristics of the estradiol receptor (ER) systems in Ishikawa and HEC-50 cells. Saturation analyses of cytosolic estrogen binders were performed over a 0.1-70 nM range of [3H]estradiol concentrations. Equilibrium dissociation constants and number of binding sites were determined by graphic analysis of Scatchard plots or computed by applying Fourier-derived affinity spectrum analysis (FASA) of the binding data. No significant differences were noted in the dissociation constants (Kd approx. 0.6 nM) or number of binding sites (approx. 6-10 fmol/mg protein) for the single binder that could be evaluated by the graphic method in cytosol from the two cell lines. However, 2 binders in Ishikawa cells (Kd approx. 0.2 and 6 nM) could be detected by the FASA method; the higher affinity binder in HEC-50 cells could not be clearly demonstrated. Structural differences in the specific estrogen binders which might distinguish HEC-50 from Ishikawa cells or normal endometrial tissue were investigated by using the anti-ER monoclonal antibody JS 34/32. Interaction of the antibody with [3H]estradiol binders of estrogen-responsive cells and tissue was evident from the formation of labeled complexes that were shown to sediment faster in glycerol density gradients and could be immunoprecipitated with Protein A attached to Sepharose beads. In contrast, the antibody did not recognize labeled specific binders in the HEC-50 cells. Furthermore, [3H]estradiol receptors in Ishikawa cells could be transformed into a species that exhibited increased hydrophilicity, evident from its binding to DNA-cellulose, whereas binders from HEC-50 could not. These results indicate that the lack of responsiveness of HEC-50 cells to estrogens might be due to structural or functional alterations in the ER protein resulting in a loss of its capability to undergo estrogen-directed conformational changes required for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号