首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Olsson AM  Bjurhager I  Gerber L  Sundberg B  Salmén L 《Planta》2011,233(6):1277-1286
Polarisation Fourier transform infra-red (FTIR) microspectroscopy was used to characterize the organisation and orientation of wood polymers in normal wood and tension wood from hybrid aspen (Populus tremula × Populus tremuloides). It is shown that both xylan and lignin in normal wood are highly oriented in the fibre wall. Their orientation is parallel with the cellulose microfibrils and hence in the direction of the fibre axis. In tension wood a similar orientation of lignin was found. However, in tension wood absorption peaks normally assigned to xylan exhibited a 90° change in the orientation dependence of the vibrations as compared with normal wood. The molecular origin of these vibrations are not known, but they are abundant enough to mask the orientation dependence of the xylan signal from the S2 layer in tension wood and could possibly come from other pentose sugars present in, or associated with, the gelatinous layer of tension wood fibres.  相似文献   

2.
Secondary cell-wall assembly in flax phloem fibres: role of galactans   总被引:1,自引:0,他引:1  
Gorshkova T  Morvan C 《Planta》2006,223(2):149-158
Non-lignified fibre cells (named gelatinous fibres) are present in tension wood and the stems of fibre crops (such as flax and hemp). These cells develop a very thick S2 layer within the secondary cell wall, which is characterised by (1) cellulose microfibrils largely parallel to the longitudinal axis of the cell, and (2) a high proportion of galactose-containing polymers among the non-cellulosic polysaccharides. In this review, we focus on the role of these polymers in the assembly of gelatinous fibres of flax. At the different stages of fibre development, we analyse in detail data based on sugar composition, linkages of pectic polymers, and immunolocalisation of the β-(1→4)-galactans. These data indicate that high molecular-mass gelatinous galactans accumulate in specialised Golgi-derived vesicles during fibre cell-wall thickening. They consist of RG-I-like polymers with side chains of β-(1→4)-linked galactose. Most of them are short, but there are also long chains containing up to 28 galactosyl residues. At fibre maturity, two types of cross-linked galactans are identified, a C–L structure that resembles the part of soluble galactan with long side chains and a C–S structure with short chains. Different possibilities for soluble galactan to give rise to C–L and C–S are analysed. In addition, we discuss the prospect for the soluble galactan in preventing the newly formed cellulose chains from completing immediate crystallisation. This leads to a hypothesis that firstly the secretion of soluble galactans plays a role in the axial orientation of cellulose microfibrils, and secondly the remodelling and cross-linking of pectic galactans are linked to the dehydration and the assembly of S2 layer.  相似文献   

3.
In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45 degrees using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a beta-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.  相似文献   

4.
Cellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of alpha- and beta-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandisbeta-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with wood-fibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems.  相似文献   

5.
6.
Biocomposites were subject to exposure to a mixture of fungi and algae in a microenvironment chamber. Surface and bulk property changes of polypropylene/wood flour, recycled polypropylene/cellulose and polylactide/wood flour were monitored by tensile testing, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Field Emission Scanning Electron Microscope (FE-SEM).All the biocomposites showed a substantial decrease in toughness after 28 and 56 days of hydrolysis. The ductility increased after 28 and 56 days, but deteriorated after 84 days of hydrolysis. Biofilm formation occurred on all biocomposites even if the polymer itself was inert to biodegradation. The microbial colonization affected mainly the surface properties of polypropylene biocomposites while changes were monitored also in the bulk properties of polylactide biocomposites.The cellulose fibres in the composites gave a more easily colonized surface mainly attributed to water uptake. In the short term perspective, the water uptake offered better conditions for biofilm adhesion, and in the longer perspective the exposure to microorganisms also resulted in mechanical degradation, followed by biodegradation of cellulose. With time this will leave a porous matrix of polypropylene, while biodegradable polymers such as polylactide will degrade in parallel with the fibre part.  相似文献   

7.
Flax fibres (Linum usitatissimum L.) were subjected to chemical and enzymatic analysis in order to determine the compositional changes brought about by the retting process and also to determine the accessibility of the fibre polymers to enzymatic treatment. Chemical analysis involved subjecting both retted and non retted fibres to a series of sequential chemical extractions with 1% ammonium oxalate, 0.05 M KOH, 1 M KOH and 4 M KOH. Retting was shown to cause minimal weight loss from the fibres but caused significant changes to the pectic polymers present. Retted fibres were shown to have significantly lower amounts of rhamnogalacturonan as well as arabinan and xylan. In addition the average molecular mass of the pectic extracts was considerably lowered. Enzyme treatment of the 1 M KOH extracts with two different enzymes demonstrated that the non retted extract contained a relatively high molecular weight xylan not found in the retted extract. Treatment of the 1 M KOH extracts and the fibres with Endoglucanase V from Trichoderma viride demonstrated that while this enzyme solubilised cellulose as well as xylan and xyloglucan oligomers from the extract, it had limited access to these polymers on the fibre. MALDI-TOF MS analysis of the material solubilised from the extract suggested that the xylan was randomly substituted with 4-O-methyl glucuronic acid moieties. The xyloglucan was shown to be of the XXXG type and was substituted with galactose and fucose units. The enzyme treatments of the fibres demonstrated that the xylan and xyloglucan polymers in the fibres were not accessible to the enzyme but that material which was entrapped by the cellulose could be released by the hydrolysis of this cellulose.  相似文献   

8.
Wood fibres constitute a renewable raw material for the production of novel biomaterials. The development of efficient methods for cellulose surface modification is essential for expanding the properties of wood fibres for increased reactivity and compatibility with other materials. By combining the high affinity between xyloglucan and cellulose, the unique mechanistic property of xyloglucan endo-transglycosylases (XET, EC 2.4.1.207) to catalyze polysaccharide-oligosaccharide coupling reactions, and traditional carbohydrate synthesis, a new system for the attachment of a wide variety of functional groups to wood pulps has been generated. An overview of recent developments is presented in the context of the structure, physical properties, and historical applications of xyloglucan.  相似文献   

9.
Wood fibres constitute a renewable raw material for the production of novel biomaterials. The development of efficient methods for cellulose surface modification is essential for expanding the properties of wood fibres for increased reactivity and compatibility with other materials. By combining the high affinity between xyloglucan and cellulose, the unique mechanistic property of xyloglucan endo-transglycosylases (XET, EC 2.4.1.207) to catalyze polysaccharide-oligosaccharide coupling reactions, and traditional carbohydrate synthesis, a new system for the attachment of a wide variety of functional groups to wood pulps has been generated. An overview of recent developments is presented in the context of the structure, physical properties, and historical applications of xyloglucan.  相似文献   

10.
The most abundant intramuscular connective tissue component, the perimysium, of bovine M. sternomandibularis muscle was shown to be a crossed-ply arrangement of crimped collagen fibres which reorientate and decrimp on changing muscle fibre sarcomere length. Reorientation of perimysial strands was observed by light microscopy and identification of these strands as collagen fibres was confirmed by high-angle X-ray diffraction. Mean collagen fibre direction with respect to the muscle fibres ranged from approximately 80 degrees at sarcomere length = 1.1 micron to approximately 20 degrees at 3.9 microns. This behaviour was well described by a model of a crimped planar network surrounding a muscle fibre bundle of constant volume but varying length. Modelling of the mechanical properties of the perimysium at different sarcomere lengths produced a load-sarcomere length curve which was in good agreement with the passive elastic properties of the muscle, especially at long sarcomere lengths. It is concluded that the role of the perimysial collagen network is to prevent over-stretching of the muscle fibre bundles.  相似文献   

11.
The application of nitrogen-containing fertilisers is one approach used to increase growth rates and productivity of forest tree plantations. However, the effects of nitrogen fertilisation on wood properties have not been systematically assessed. The aim of this work was to document the impacts of nitrogen fertilisation on wood formation and secondary xylem fibre properties. We used three fertilisation treatments in which the level of ammonium nitrate was adjusted to 0, 1 and 10 mM in a complete nutrient solution applied daily over a period of 28 days in standardised greenhouse experiments with clonal material of Populus trichocarpa (Torr and Gray) × deltoides (Bartr. ex Marsh). We showed that there was a short-term and repeatable response in which xylem fibre morphology and secondary cell wall structure adapt to a shift in N availability. Under high-nitrogen exposure, xylem fibres were 17% wider and 18% shorter compared to the adequate nitrogen treatment. A very significant thickening of the fibre cell walls was also observed throughout the stem of trees receiving the high-N treatment. It appeared that cell wall structure was greatly affected by the high-N treatment as fibres developed a modified inner cell wall layer. Histological observations indicated that the internal cell wall layer was enriched in cellulose and chemical determinations showed that wood contained more holocellulose. Together, these results indicate that the response of poplar to nitrogen availability may involve marked effects on secondary xylem formation.  相似文献   

12.
Future developments in cellulosic materials are predicated by the need to understand the fundamental interactions that occur at cellulose fibre interfaces. These interfaces strongly influence the material properties of fibre networks and fibre reinforced composites. This study takes advantage of fluorescence resonance energy transfer (FRET) and fluorescence microscopy to image cellulose interfaces. Steady-state epi-fluorescence microscopy suggests that energy transfer from coumarin dyed fibres to fluorescein dyed fibres is occurring at the fibre–fibre interface. The FRET response for natural spruce fibre interfaces is distinctly different from that observed in synthetic viscose fibres. This approach constitutes a novel methodology for the characterization of soft material interfaces on the molecular scale, and represents a major opportunity for advancing the understanding of fibrous network structures.  相似文献   

13.
Flax (Linum usitatissimum L.) is a very important source of natural fibres used by the textile industry. Flax fibres are called lignocellulosic, because they contain mainly cellulose (about 70%), with hemicellulose, pectin and lignin. Lignin is a three-dimensional polymer with a high molecular weight, and it gives rigidity and mechanical resistance to the fibre and plant. Its presence means the fibres have worse elastic properties than non-lignocellulosic fibres, e.g. cotton fibres, which contain no lignin. The main aim of this study was to produce low-lignin flax plants with fibres with modified elastic properties. An improvement in the mechanical properties was expected. The used strategy for CAD down-regulation was based on gene silencing RNAi technology. Manipulation of the CAD gene caused changes in enzyme activity, lignin content and in the composition of the cell wall in the transgenic plants. The detected reduction in the lignin level in the CAD-deficient plants resulted in improved mechanical properties. Young's modulus was up to 75% higher in the generated transgenic plants (CAD33) relative to the control plants. A significant increase in the lignin precursor contents and a reduction in the pectin and hemicellulose constituents was also detected. A decrease in pectin and hemicellulose, as well as a lower lignin content, might lead to improved extractability of the fibres. However, the resistance of the transgenic lines to Fusarium oxysporum was over two-fold lower than for the non-transformed plants. Since Fusarium species are used as retting organisms and had been isolated from retted flax, the increased sensitivity of the CAD-deficient plant to F. oxysporum infection might lead to improved flax retting.  相似文献   

14.
Cellulose microfibril angle in the cell wall of wood fibres   总被引:1,自引:0,他引:1  
The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.  相似文献   

15.
Because hemp is a short-day plant, postponing the sowing date might be a suitable strategy to obtain shorter and smaller plants around flowering, when primary fibres are 'ripe' enough to be harvested. Smaller plants can be processed on existing flax scutching and hackling lines and might have fibre characteristics that are desirable for producing high-quality 'long fibres' for yarn spinning.
It was investigated whether sowing beyond the normal sowing period in the Netherlands affects the ratio in which fibres and wood are produced, and what proportion of these fibres are long fibres, suitable for long fibre spinning. About 400 stem samples were fractioned into retting losses, wood, tow, and long fibre, and the ratios between fractions were analysed using multiple linear regression analyses.
A normal sowing date at the end of April was compared with a postponed sowing date at the end of May. The total fibre/wood ratio was not affected. More than 95% of the variance in total fibre was accounted for by the wood weight per stem (55.5%), the variety (+33.3%) and the stem part (+6.5%). The amount of long fibre per stem mainly depended on the amount of the total fibre per stem (95.4% variance was accounted for) and the stem part (+2.0%).
For economic reasons, it could be interesting to grow two successive high-quality hemp crops in one growing season. Therefore, in an additional experiment with one variety, the effect of sowing fibre hemp up to 12 weeks later than normal on the quantity and quality of the fibres was studied. Postponing the sowing date up to 12 weeks had no important effects on retting losses, the total fibre/wood ratio, and the long fibre/total fibre ratio. It is therefore technically possible to grow two successive hemp crops. Whether this fits well in farming systems and a hemp production chain remains to be studied.  相似文献   

16.
Summary Elastic fibres may be stained by a number of dyes, e.g. Direct Blue 1 (C.I. 24410), Direct Blue 10 (C.I. 24340), Direct Blue 15 (C.I. 24400), Direct Blue 152 (C.I. 24366) and Direct Violet 37 (C.I. 24370). A convenient method using Direct Blue 152 has been developed which is specific for elastic fibres. The method is simple and allows the demonstration of other connective tissue fibres. Staining of elastic fibres is unimpaired by numerous blocking procedures or by changes in dyebath pH. These properties are shared by several standard elastic fibre stains.As the Direct dyes and several of the standard elastic fibre stains possess numerous aromatic rings a wide range of dyes containing varying numbers of aromatic rings were examined for ability to stain elastic fibres. No association was observed between the ability to stain elastic fibres and dye class, formal charge or the presence of hydrogen bonding groups. Staining was, however, definitely associated with the presence in the dye molecule of 5 or more aromatic rings. This suggested that van der Waals forces of attraction may be responsible for elastic fibre staining both by Direct dyes and the standard elastic fibre stains. Staining of elastic fibres as a side-effect in many procedures is similarly explicable.  相似文献   

17.
Weaning is a critical phase in intensive piglet production marked by the frequent occurrence of digestive disorders posing health and economic burden. To stave off such weaning-related problems, antibiotics and supplements containing high levels of ZnO are often used. In this study, we investigated whether natural fibres obtained from two plants known for their dietary fibre profile and antioxidant properties: flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.), can serve as a health-promoting diet supplement. The study was conducted on a total of 191 Polish Large White piglets from 18 L, from their birth to 56 days of age. Piglets were divided by litters into six groups: W1.5, F1.5, H1.5, W2.0, F2.0, and H2.0. Groups W1.5, F1.5, and H1.5 received feed supplemented with 1.5% fibre from wood cellulose (W), flax (F), and hemp (H), respectively, while groups W2.0, F2.0, and H2.0 received feed with a higher 2.0% content of the same fibres. Flax and hemp fibres were characterised by a complex composition, antioxidant properties due to the presence of phenolic acids, and low risk of mycotoxin contamination. Flax fibre resulted in best weight gains and feed conversion ratio (P ≤ 0.05) of piglets, while hemp fibre had higher positive effect on antioxidant status (P ≤ 0.05) compared to the other two fibre additives. Neither flax nor hemp fibres had any adverse effect on the haematological and biochemical blood parameters. Piglets receiving a diet with 1.5% added fibre showed better growth performance, while diet supplementation with 2% fibre had a beneficial effect on the content of butyric acid in the small intestinal chyme (P ≤ 0.05). The results suggested that both flax and hemp fibres can be innovative feed additives for weaned piglets. However, further studies should be conducted in commercial farms, as the effects of dietary fibre could vary in more challenging environmental conditions.  相似文献   

18.
19.
Short-fibre formation during cellulose degradation by cellulolytic fungi   总被引:3,自引:0,他引:3  
Summary All cell-free filtrates of 26 fungal strains containning cellulase activities degraded native cellulose to both reducing sugar and insoluble short fibres. Low-molecular components from the crude filtrates could also degrade native cellulose into short fibres, not accompanied with the production of reducing sugar. Short fibre formation played an important role in cellulose degradation to make the substrate more accessible to attack of cellulases.  相似文献   

20.
Harald Fuge 《Chromosoma》1985,91(3-4):322-328
Microtubules of amphitelically oriented sex univalent chromosome fibres were traced in longitudinal serial sections. The investigated chromosomes were from four different cells representing consecutive stages of anaphase segregation. A correlation was found between chromosome movement and a characteristic distribution of free microtubules (fMTs) oriented obliquely with respect to the kinetochore microtubules. During chromosome segregation the proportion of these skew fMTs (the proportion of skew fMTs is a measure of the degree of disorder in the fibre) is higher in the fibre pointing in the direction of movement than in the trailing fibre. The results are discussed in relation to spindle forces. Although the anaphase of amphitelic sex chromosomes is different in several respects (orientation of chromosome fibres, mutual connexion of chromosomes via kinetochore microtubules, spindle elongation occurring simultaneously), the observations on the distribution of fMTs in the chromosome fibres is, in principle, compatible with those previously made on syntelic autosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号