首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of 4-(4-Methoxyphenyl)-2-(methylthio)pyrimidine-5-carbonitrile was developed linked to an aromatic moiety via N-containing bridge and then evaluated for their cytotoxic activity against MCF-7 and K562 cell lines. Seven compounds exhibited the highest activity against both cell lines where compounds 4d and 7f were the most active against K562 cell line. Exploring their molecular mechanisms by enzyme inhibition assay on PI3Kδ/γ and AKT-1 showed that compound 7f was promising more than 4d with IC50 = 6.99 ± 0.36, 4.01 ± 0.55, and 3.36 ± 0.17 uM, respectively. Also, flowcytometric analysis revealed that 7f caused cell cycle arrest at S-phase followed by caspase 3 dependent apoptosis induction. Mechanistically, compound 7f proved to modulate the expression of PI3K, p-PI3K, AKT, p-AKT, Cyclin D1, and NFΚβ. Furthermore, in-vivo toxicity study indicated good safety profile for 7f. These findings suggest that the trimethoxy derivative 7f has strong potential as a multi-acting inhibitor on PI3K/AKT axis targeting breast cancer and leukaemia.  相似文献   

2.
Aspartate kinase is a feedback-regulated enzyme that controls the first step common to the biosynthesis of lysine, threonine, isoleucine, and methionine in plants. Aspartate kinase was purified from Black Mexican Sweet maize (Zea mays L.) cell suspension cultures for physical and kinetic characterization studies. Partial purification and elution from an anion exchange column resolved two lysine-sensitive aspartate kinase isoforms. Both isoforms were purified >1,200-fold to a minimum specific activity of 18 units/milligram of protein. Both isoforms were sensitive to the lysine analogues S-2-aminoethyl-l-cysteine, l-lysine ethyl ester, and δ-hydroxylysine. No threonine-sensitive form of aspartate kinase was detected at any stage during the purification. Additional purification steps were combined with preparative gel electrophoresis to obtain apparently homogeneous lysine-sensitive aspartate kinase. Aspartate kinase appeared to be a tetramer with a holoenzyme molecular weight of 254,000 and to be composed of 49,000 and 60,000 subunits. The tetramer appeared to disassociate during native gel electrophoresis to 113,000 dalton species that retained aspartate kinase activity.  相似文献   

3.
The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts.  相似文献   

4.
Synthesis of heat shock proteins (HSPs) in the leaves of a drought- and heat-resistant (line ZPBL 1304), and a drought- and heat-sensitive (line ZPL 389) line of maize (Zea mays L.) was studied under two environmental stress treatments: (a) soil drying and high temperature and (b) high temperature. In the first treatment 13-day-old plants were exposed to 7-day soil drying followed by high temperature stress (45°C), and in the second treatment 20-day-old plants were exposed to high temperature stress (45°C). Second leaves were labeled with [35S]methionine. During the labeling period line ZPBL 1304 showed no signs of leaf dehydration under soil drying and high temperature stress conditions. In contrast, line ZPL 389 was dehydrated 23%, as determined by relative water content. Incorporation of [35S]methionine into protein was greater in the resistant than in the sensitive line in both treatments. The pattern of synthesis of HSPs in the two lines was similar in treatments 1 and 2. Both lines synthesized a high molecular mass set and a low molecular mass set of HSPs. Proteins from both sets from both lines of maize appeared similar to each other, with respect to the molecular mass. Heated plants of the drought- and heat-resistant line ZPBL 1304 synthesized a band of HSP(s) of approximately 45 kilodaltons which was not found in heated plants of the drought and heat sensitive line ZPL 389. This is the first report on qualitative intraspecific difference in the synthesis of HSPs in maize.  相似文献   

5.
Rotylenchulus reniformis resistant LONREN-1×FM966 breeding lines developed at Auburn University have demonstrated that the nematode resistance is accompanied by severe stunting, limited growth, and low yields. The objectives of this study were to evaluate the effects of applying nematicides to selected LONREN breeding lines on R. reniformis nematode populations, plant stunting, and yield. Four resistant breeding lines from the LONREN-1×FM966 cross, one susceptible line from the LONREN-1×FM966 cross, as well as LONREN-1, BARBREN-713, and the susceptible cultivar DP393 were evaluated with and without nematicides in the presence of R. reniformis. In the greenhouse, nematicides increased plant height across all genotypes compared with no nematicide. Rotylenchulus reniformis populations were 50% lower in the resistant lines compared with the susceptible lines at 45 days after planting (DAP). In microplot and field trials, the phenotypic stunting of all genotypes was reduced by aldicarb with increases in plant heights at 30 and 75 DAP. Increases in yields were evident across all genotypes treated with aldicarb. In all three trial environments, BARBREN-713 outperformed the LONREN-derived lines as well as ‘DP393’ in seed cotton yields, while having significantly lower R. reniformis egg densities than the susceptible genotypes.  相似文献   

6.
Lysine, threonine, methionine and isoleucine are synthesized through the aspartate metabolic pathway. The concentrations of soluble lysine and threonine in cereal seeds are very low. Coix lacryma-jobi (coix) is a maize-related grass and the enzymological aspects of the aspartate metabolic pathway are completely unknown. In order to obtain information on lysine metabolism in this plant species, two enzymes involved in the biosynthesis of these amino acids (aspartate kinase 〚AK, EC 2.7.2.4〛 and homoserine dehydrogenase 〚HSDH, EC 1.1.1.3〛) and two enzymes involved in lysine degradation (lysine 2-oxoglutarate reductase 〚LOR, EC 1.5.1.8〛 and saccharopine dehydrogenase 〚SDH, EC 1.5.1.9〛) were isolated and partially characterized in coix seeds. AK activity was inhibited by threonine and lysine separately, suggesting the presence of two isoenzymes, one sensitive to lysine and the other sensitive to threonine, with the latter corresponding to approximately 60% of the total AK activity. In contrast to previous results from other plant species, the threonine-sensitive AK eluted from an ion exchange chromatography column at higher KCl concentration than the lysine-sensitive form. The HSDH activity extracted from the seeds was partially inhibited by threonine, indicating the presence of threonine-sensitive and threonine-resistant isoenzymes. LOR and SDH activities were detected only in the endosperm tissue and co-purified on an anion exchange chromatography column, suggesting that the two activities may be linked on a single bifunctional polypeptide, as observed for other plant species. One single SDH activity band was observed on non-denaturing PAGE gels. The Km for saccharopine of SDH was determined as 0.143 mM and the Km for NAD as 0.531 mM. Although SDH activity was shown to be stable, LOR, AK and HSDH were extremely unstable, under all buffer systems tested.  相似文献   

7.
The effects of ear removal on gas exchange traits, chlorophyll, and leaf N profiles, and activities of ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase were examined using four maize hybrids (B73 × Mo17, B73 × LH38, FS854, and CB59G × LH38) and four inbred lines (B73, Mo17, LH38, and CB59G) as experimental material. A diverse genotypic response to ear removal was observed which was generally typified by (a) greatly accelerated loss of chlorophyll, leaf N, enzyme activities, and CO2 exchange relative to controls for B73, B73 × Mo17, and B73 × LH38, (b) intermediate rate of decline for leaf constituents for FS854, LH38, and Mo17, or (c) loss of leaf constituents at similar or slower rates than for control plants for CB59G and CB59G × LH38. For all genotypes which had accelerated senescence relative to controls, loss of CO2 exchange activity was correlated with increased internal CO2 concentrations. Thus, it was concluded that metabolic factors and not stomatal effects were responsible for loss of CO2 exchange activity. Loss of chlorophyll, leaf N, and enzyme activities correlated well with loss of CO2 exchange activity only for some of the genotypes. Accelerated leaf senescence in response to ear removal for the inbred line B73 and the hybrids B73 × Mo17 and B73 × LH38, as well as the apparent delayed leaf senescence for the inbred line CB59G and the hybrid CB59G × LH38 show that the contrasting responses to ear removal, rapid versus delayed senescence, can be transmitted as dominant traits to F1 hybrids. The intermediate response by some genotypes, and the dominance of contrasting senescence traits, suggested a relatively complex inheritance for expression of the ear removal response.  相似文献   

8.
Summary When Escherichia coli B is grown in the presence of methionine, leucine and some other amino acids, lysine-sensitive aspartokinase (aspartokinase III) and aspartic semialdehyde dehydrogenase syntheses are derepressed. This can be explained by a synergistic inhibition between lysine and these amino acids on the lysine-sensitive aspartokinase, which leads to a decrease of the lysine intracellular pool.  相似文献   

9.
Modification of cytokinins by cauliflower microsomal enzymes   总被引:3,自引:1,他引:2       下载免费PDF全文
Two homozygous mutant lines of barley (Hordeum vulgare L.) R3202 (Lt1b/Lt1b) and R3004 (Lt2/Lt2), are resistant to lysine plus threonine. They contain aspartate kinase isoenzymes with lost or decreased feedback sensitivity to lysine in either isoenzyme AKII (R3202) or isoenzyme AKIII (R3004). A homozygous double mutant line (Lt1b/Lt1b, Lt2/Lt2) has now been constructed that grows vigorously on 8 millimolar lysine, 8 millimolar threonine, and 1 millimolar arginine. Both AKII and AKIII from the double mutant have altered lysine sensitivities, identical to those previously observed in R3202 and R3004, respectively. Aspartate kinase activity in extracts of leaves, roots, and the maturing endosperm of the double mutant was much less sensitive to lysine inhibition than the enzyme in comparable extracts of the parent cv Bomi, suggesting that aspartate kinase is expressed in a similar manner in different tissues of barley.

A further mutant, R2501, resistant to lysine plus threonine has now given rise to a homozygous line (Lt1a/Lt1a), which had previously not been possible. AKII isolated from the homozygous line was completely insensitive to 10 millimolar lysine; however, the combined action of 10 millimolar lysine and 0.8 millimolar S-adenosylmethionine inhibited it by 60%, demonstrating the retention of some of the regulatory characteristics of the wild type enzyme.

  相似文献   

10.
Stowe AE  Holt JS 《Plant physiology》1988,87(1):183-189
The relationship of triazine resistance to decreased plant productivity was investigated in Senecio vulgaris L. F1 reciprocal hybrids were developed from pure-breeding susceptible (S) and resistant (R) lines. The four biotypes (S, S × R, R, R × S) were compared in terms of atrazine response, electron transport, carbon fixation, and biomass production. Atrazine response, carbon fixation rate, and PSII and whole-chain electron transport rates of hybrids were nearly identical to those of their respective maternal parents. Significant differences occurred between the two susceptible (S, S × R) and two resistant (R, R × S) biotypes in atrazine response (I50), carbon fixation rate, and PSII and whole-chain electron transport rates; PSI rates were identical in all four biotypes. Coupled and uncoupled, whole-chain electron transport rates of thylakoids of the two susceptible biotypes were approximately 50% greater than those of the two resistant biotypes at photon flux densities greater than 215 micromoles per square meter per second. Carbon exchange rates of the two susceptible biotypes were 23% greater than those of the two resistant biotypes. Hybrid biotypes (S × R, R × S) were not identical to their maternal parents in biomass production. The S, S × R, and R × S plants all achieved greater biomass than R plants. These results suggest that while the resistance mutation influences thylakoid performance, reduced productivity of triazine-resistant plants cannot be ascribed solely to decreases in electron transport or carbon assimilation rates brought about by the altered binding protein. Since the F1 hybrids differed from their maternal parents only in nuclear genes, it appears that the detrimental effects of the triazine resistance mutation on plant growth may be attenuated by interactions of the plastid and nuclear genomes.  相似文献   

11.
The genetic inheritance of resistance to a commercial formulation of Bacillus thuringiensis subsp. kurstaki was examined in a Trichoplusia ni colony initiated from a resistant population present in a commercial vegetable greenhouse in British Columbia, Canada. Progeny of F1 reciprocal crosses and backcrosses between F1 larvae and resistant (PR) and susceptible (PS) populations were assayed at different B. thuringiensis subsp. kurstaki concentrations. The responses of progeny of reciprocal F1 crosses were identical, indicating that the resistant trait was autosomal. The 50% lethal concentration for the F1 larvae was slightly higher than that for PS, suggesting that resistance is partially recessive. The responses of both backcross progeny (F1 × PR, F1 × PS) did not correspond to predictions from a single-locus model. The inclusion of a nonhomozygous resistant parental line in the monogenic model significantly increased the correspondence between the expected and observed results for the F1 × PR backcross but decreased the correspondence with the F1 × PS backcross results. This finding suggests that resistance to B. thuringiensis subsp. kurstaki in this T. ni population is due to more than one gene.  相似文献   

12.
The initial rate of quenching of quinacrine fluorescence was used to monitor Mg:ATP-dependent H+-pumping in membrane vesicles from corn (Zea mays L. cv WF9 × MO17) roots and obtain a preparation in which vanadate-sensitive H+-pumping could be observed. Separation of membranes on a linear sucrose density gradient resulted in two distinct peaks of H+-pumping activity: a major one, at density 1.11 grams per cubic centimeter, was sensitive to NO3 and resistant to vanadate, while a minor one, at density 1.17 grams per cubic centimeter, was substantially resistant to NO3 and sensitive to vanadate. A membrane fraction enriched in the vanadate-sensitive H+-pump could be obtained by washing microsomes prepared in the presence of 10% glycerol with 0.25 molar KI. The kinetics of inhibition of H+-pumping by vanadate in this membrane preparation indicated that most of the H+-pumping activity in this fraction is sensitive to inhibition by vanadate, 50% inhibition being reached at about 60 micromolar vanadate. This value is fairly close to that observed for inhibition by vanadate of the ATPase activity in similar experimental conditions (40 micromolar). The inhibitor sensitivity, divalent cation dependence, pH optimum (6.5), and Km for ATP (0.7 millimolar) of the H+-pumping activity match quite closely those reported for the plasma membrane ATPase of corn roots and other plant materials.  相似文献   

13.
Primary open angle glaucoma (POAG) is a multi-factorial optic disc neuropathy characterized by accelerating damage of the retinal ganglion cells and atrophy of the optic nerve head. The vulnerability of the optic nerve damage leading to POAG has been postulated to result from oxidative stress and mitochondrial dysfunction. In this study, we investigated the possible involvement of the mitochondrial genomic variants in 101 patients and 71 controls by direct sequencing of the entire mitochondrial genome. The number of variable positions in the mtDNA with respect to the revised Cambridge Reference Sequence (rCRS), have been designated “Segregating Sites”. The segregating sites present only in the patients or controls have been designated “Unique Segregating Sites (USS)”. The population mutation rate (θ = 4Neμ) as estimated by Watterson’s θ (θw), considering only the USS, was significantly higher among the patients (p = 9.8×10−15) compared to controls. The difference in θw and the number of USS were more pronounced when restricted to the coding region (p<1.31×10−21 and p = 0.006607, respectively). Further analysis of the region revealed non-synonymous variations were significantly higher in Complex I among the patients (p = 0.0053). Similar trends were retained when USS was considered only within complex I (frequency 0.49 vs 0.31 with p<0.0001 and mutation rate p-value <1.49×10−43) and ND5 within its gene cluster (frequency 0.47 vs 0.23 with p<0.0001 and mutation rate p-value <4.42×10−47). ND5 is involved in the proton pumping mechanism. Incidentally, glaucomatous trabecular meshwork cells have been reported to be more sensitive to inhibition of complex I activity. Thus mutations in ND5, expected to inhibit complex I activity, could lead to generation of oxidative stress and favor glaucomatous condition.  相似文献   

14.
Genotypes of burley (cultivars B-21 and B-49), flue-cured (line VA-81 and cultivar PD-4), and Connecticut broadleaf (cultivar C9) tobacco (Nicotiana tabacum) resistant (R) or susceptible (S) to the tobacco cyst nematode Globodera tabacum tabacum were crossed. F1 progeny of burley and susceptible broadleaf were selfed and backcrossed to produce additional progeny for evaluation of resistance in greenhouse experiments. Plants without adult female nematodes visible (×10 magnification) on the root surface 6 weeks after inoculation were classified as resistant, whereas those plants in which one or more females were evident were classified as susceptible. Segregation ratios for progeny of resistant and susceptible plants were not different from 3:1 and 1:1 for F2 (F1 × F1) and BC1 (F1 × S) lines, respectively, indicating that resistance in burley to G. t. tabacum is conferred by a single, dominant gene. Segregation ratios for resistance in crosses between nematode-resistant burley and flue-cured tobacco (F1 and F2 progeny) and between burley-flue-cured hybrids and broadleaf BC1 (F1 × S) and BC2 (BC1 × S) progeny were consistent with the assumption that resistance to G. t. tabacum in burley and flue-cured tobacco is conferred by the same or closely linked single, dominant gene(s).  相似文献   

15.
Gleditsia triacanthos L. is a deciduous tree belonging to the family Fabaceae. It possesses important biological activities as anti-mutagenic, anticancer, cytotoxic and treating rheumatoid arthritis. The total ethanol extract (EtOHE) and successive extracts (petroleum ether, chloroform, ethyl acetate, and aqueous ethanol) were prepared from the leaves. Eight flavone glycosides and two flavone aglycones named vicenin-I (1), vitexin (2), isovitexin (3), orientin (4), isoorientin (5), luteolin-7-O-ß-glucopyranoside (6), luteolin-7-O-ß-galactopyranoside (7), apigenin-7-O-ß-glucopyranoside (8), luteolin (9) and apigenin (10) were isolated from the aqueous ethanol extract of G. triacanthos L. leaves. Potent cytotoxic activity of the EtOHE extract was observed against the liver (IC50 = 1.68 μg), breast (IC50 = 0.74 μg), cervix (IC50 = 1.28 μg), larynx (IC50 = 0.67 μg) and colon (IC50 = 2.50 μg) cancer cell lines. Cytotoxic activity of compounds 2, 4, 6 and 8 against, the liver, breast and colon cancer cell lines was also proved. Evaluation of the in-vivo antioxidant activity of the EtOHE and successive extracts revealed that the highest activity was exhibited by 100 mg of EtOHE (97.89% potency) as compared with vitamin E (100% potency). Compound 6 showed 91.8% free radical scavenging activity.  相似文献   

16.
Cobalamin is essential for growth of Euglena gracilis and photosynthesis. Methylcobalamin in Euglena chloroplasts (Y Isegawa, Y Nakano, S Kitaoka, 1984 Plant Physiol 76: 814-818) functions as a coenzyme of methionine synthetase. The requirement of cobalamin for photosynthesis appeared remarkably high in Euglena grown under the dark-precultured condition. The required amount of cobalamin for normal photosynthetic activity was 7.4 × 10−11 molar, while 7.4 × 10−10 molar cobalamin was required for normal growth. The lowered photosynthetic activity in cobalamin-limited cells was restored 20 hours after feeding cyanocobalamin or methionine to cobalamin-limited cells. Lowering of photosynthetic activity was due to loss of photosystem I activity. This photosynthetic activity was recovered after supplementation by methionine or cobalamin. The results suggest that methionine serves for the stabilization of photosystem I. This paper is the first report of the physiological function of cobalamin in chloroplasts of photosynthetic eukaryotes.  相似文献   

17.
Pyrophosphorylytic kinetic constants (S0.5, Vmax) of partially purified UDP-glucose- and ADP-glucose pyrophosphorylases from potato tubers were determined in the presence of various intermediary metabolites. The S0.5 of UDP-glucose pyrophosphorylase for UDP-glucose (0.17 millimolar) or pyrophosphate (0.30 millimolar) and the Vmax were not influenced by high concentrations (2 millimolar) of these substances. The most efficient activator of ADP-glucose pyrophosphorylase was 3-P-glycerate (A0.5 = 4.5 × 10−6 molar). The S0.5 for ADP-glucose and pyrophosphate was increased 3.5-fold (0.83 to 0.24 millimolar) and 1.8-fold (0.18 to 0.10 millimolar), respectively, with 0.1 millimolar 3-P-glycerate while the Vmax was increased nearly 4-fold. The magnitude of 3-P-glycerate stimulation was dependent upon the integrity of key sulfhydryl groups (−SH) and pH. Oxidation or blockage of −SH groups resulted in a marked reduction of enzyme activity. Stimulations of 3.1-, 2.9-, 4.8-, and 9.5-fold were observed at pH 7.5, 8.0, 8.5, and 9.0, respectively, in the presence of 3-P-glycerate (2 millimolar). The most potent inhibitor of ADP-glucose pyrophosphorylase was orthophosphate (I0.5 = 8.8 × 10−5. molar). This inhibition was reversed with 3-P-glycerate (1.2 × 10−4 molar), resulting in an increased I0.5 value of 1.5 × 10−3 molar. Likewise, orthophosphate (7.5 × 10−4 molar) caused a decrease in the activation efficiency of 3-P-glycerate (A0.5 from 4.5 × 10−6 molar to 6.7 × 10−5 molar). The significance of 3-P-glycerate activation and orthophosphate inhibition in the regulation of α-glucan biosynthesis in Solanum tuberosum is discussed.  相似文献   

18.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

19.
Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme’s substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme’s haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.  相似文献   

20.
The effect of starter culture and chemical acidulation on the growth and enterotoxigenesis of Staphylococcus aureus strain S-6 in Italian dry salami under commercial manufacturing conditions was studied. The experimental design included two levels of S. aureus (104 and 105/g), three levels of starter culture (0, 105, and 106/g), three levels of initial pH (pH0) (6.1, 5.5, and 4.8), two manufacturing plants, and three replications. S. aureus growth in the salami was affected significantly (P < 0.005) by pH0, initial levels of S. aureus (staph0) and lactic acid bacteria (LAB0), day of fermentation, and by the interactions of pH0 × day, pH0 × LAB0, LAB0 × staph0, pH0 × staph0, and pH0 × location of fermentation. In general, the lower the pH0 and the higher the LAB0, the greater the inhibition of S. aureus. The LAB levels during the fermentation were affected significantly (P < 0.005) by pH0, LAB0, day of fermentation, location, LAB0 × pH0, and LAB0 × day. Derived regression equations related level of S. aureus and LAB at any day of fermentation to a number of microbiological and chemical variables. Close similarity of observed and predicted levels of S. aureus and LAB growth demonstrated the usefulness of the experimental approach in evaluating the safety of a process. No detectable enterotoxin or thermonuclease was found at any stage of processing even when S. aureus reached levels of 107/g of salami.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号