首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Serial etching of cross-sectioned prisms in undecalcified adult marsupial enamel from different species, revealed distinct cylindrical acid-resistant fibrils that were demonstrable by light microscopy and by scanning electron microscopy. No fibrils were found in the enamel of Vombatus.The fibrils and the organic matrix in the remainder of the enamel stain differently. The fibrils project from the center of prisms or the borderline between prisms and interprismatic substance.It is concluded that the fibrils are chemically different from the organic matrix in the enamel, that they constitute the compact, homogenous, and morphologically well defined organic contents of the tubules in adult marsupial enamel.Since most of the material was obtained from dry museum crania, it is concluded that the fibrils are not destroyed by prolonged drying.The scanning electron micrographs were taken at the Electron Microscopical Unit for Biological Sciences, Oslo, Norway.  相似文献   

2.
Microstructures of non-unions of human humeral shaft fractures were investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray microdiffraction. The non-union has a trabeculae structural framework similar to woven bone. Among the trabeculae are cavities that are subdivided into small chambers by thin plates of collagen fibrils. Some chambers are filled with variously shaped mineralized particles several micrometers in size. The collagen fibrils in both the trabeculae and the thin plates were only slightly mineralized by hydroxyapatite. Vesicles loaded with noncrystalline calcium phosphate (NCP) were observed in most mineralized particles, and brushite crystals with special morphology were seen to be embedded in some particles in irregular shapes. X-ray microdiffraction results indicated that the mineral phases in the non-unions were mainly NCP in addition to small amounts of hydroxyapatite and brushite. NCP deposition and insufficient mineralization of the collagen fibrils may be two important microstructural features of the non-unions of human humeral shaft fractures different from normally repaired bone callus.  相似文献   

3.
This study examined the mesocardiac and urocardiac ossicles in the gastric mill of the blue crab to describe its structure, mineralization, and dynamics throughout the molt cycle, and to assess its possible utility in age determination. Morphologically, the mineralized ossicles are similar to the calcified dorsal carapace having a lamellate structure comprised of sheets of chitin/protein fibrils. Staining with acridine orange showed the same arrangement of an epicuticle, exocuticle, and endocuticle. In much of the mesocardiac and urocardiac ossicles, the endocuticle is very reduced, with the exocuticle predominating; the reverse of the dimensions of the exoskeleton. The lamellate structure of the ossicles was confirmed with scanning electron microscopy; however, elemental mapping by energy‐dispersive analysis of X‐rays revealed that the ossicles are mineralized with calcium phosphate, in contrast to the calcium carbonate biomineral of the exoskeleton. The medial tooth of the urocardiac ossicle is not calcified, but the epicuticle is highly elaborated and impregnated with silica. Histological examination of the ossicles demonstrated that they are molted during ecdysis, so despite the appearance of bands in the mesocardiac ossicle, it is difficult to hypothesize how the bands could represent a record of chronological age. J. Morphol. 276:1358–1367, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

5.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Structural characteristics of normally calcifying leg tendons of the domestic turkey Meleagris gallopavo have been observed for the first time by tapping mode atomic force microscopy (TMAFM), and phase as well as corresponding topographic images were acquired to gain insight into the features of mineralizing collagen fibrils and fibers. Analysis of different regions of the tendon has yielded new information concerning the structural interrelationships in vivo between collagen fibrils and fibers and mineral crystals appearing in the form of plates and plate aggregates. TMAFM images show numerous mineralized collagen structures exhibiting characteristic periodicity (54-70 nm), organized with their respective long axes parallel to each other. In some instances, mineral plates (30-40 nm thick) are found interspersed between and in intimate contact with the mineralized collagen. The edges of such plates lie parallel to the neighboring collagen. Many of these plates appear to be aligned to form larger aggregates (475-600 nm long x 75-90 nm thick) that also retain collagen periodicity along their exposed edges. Intrinsic structural properties of the mineralizing avian tendon have not previously been described on the scale reported in this study. These data provide the first visual evidence supporting the concept that larger plates form from parallel association of smaller ones, and the data fill a gap in knowledge between macromolecular- and anatomic-scale studies of the mineralization of avian tendon and connective tissues in general. The observed organization of mineralized collagen, plates, and plate aggregates maintaining a consistently parallel nature demonstrates the means by which increasing structural complexity may be achieved in a calcified tissue over greater levels of hierarchical order.  相似文献   

7.
Summary Teeth of three macropod species, M. giganteus, W. bicolor and P. concinna, have been studied using the techniques of light microscopy, scanning- and transmission-electron microscopy and hardness measurement. Light microscope observations showed that the teeth of these species had a translucent enamel region close to the dentine and an outer opaque enamel region at the tooth's surface. These regions were not related to the presence or absence of tubules which are a characteristic feature of marsupial enamel. Hardness tests showed that the opaque enamel was softer than the translucent enamel. Scanning electron microscope observations revealed that there was no correlation between any particular prism packing or orientation and the opaque and translucent enamel regions. Transmission electron microscope observations showed that the translucent enamel region consisted of well defined prisms and well packed, lath-like crystals, whereas the opaque enamel was disrupted by voids (which ranged in size from enlarged micropores to about 2 m in diameter in extreme cases) between crystals and some randomly oriented, loosely packed crystals. This disruption within the opaque enamel region was more common at prism boundaries but pockets of disrupted enamel were also found within prisms and interprismatic regions. The opacity of the enamel was caused by scattering of light from the voids. The ultrastructure of the opaque enamel region indicated that this region was hypomineralized; hardness tests and polarized light microscope observations were consistent with these results.  相似文献   

8.
The morphology of head cartilage of the cephalopods Sepia officinalis and Octopus vulgaris has been studied on samples fixed and embedded for light- and electron microscopy and on fresh frozen sections viewed by polarizing microscopy. The organization of extracellular matrix (ECM) varies in different regions of the head cartilage. Superficial zones are made up of densely packed collagenous laminae parallel to the cartilage surface, while radially arranged laminae form a deeper zone where territorial and interterritorial areas are present. A compact arrangement of banded collagen fibrils (10-25 nm in diameter) forms the laminae of the superficial zones and of the interterritorial areas; a loose three-dimensional network of fibrils (10-20 nm) with many proteoglycan aggregates forms the territorial areas. A pericellular matrix surrounds the bodies of extremely branched territorial chondrocytes. Peculiar anchoring devices (ADs) are dispersed with variable orientation within the ECM. A perichondrium is present, but often connectival and muscular bundles are fused with the superficial layers of cartilage. Some vessels were also observed within the superficial inner zone and clusters of hemocyanin molecules were demonstrated both in the ECM and in some cells. The cephalopod head cartilage seems to share some morphological characteristics with both hyaline cartilage and bone tissue of vertebrates.  相似文献   

9.
Slightly etched prisms of human dental enamel surfaces were examined in the scanning electron microscope. The crystals in the central region of prisms showed a denser arrangement, similar to the crystals on the periphery, which determine their form here. A crevice-like space could be observed between the central and the peripheral region of a prism. The prisms on the enamel surface showed a wide variety in shape being either of fish-scale or key-hole form, in other places fully irregular. There was no uniform prism on a single tooth, and an interprismatic substance was never found. On the surface of a deciduous tooth a prismless enamel surface was observed consisting of edges of crystallites, which did not unite to prism formation.  相似文献   

10.
Decalcified and undecalcified preparations of the crab Cancer pagurus in the intermoult condition were studied to examine the mineralization and structure of the epicuticle, using light microscopic, electron microscopic, and microradiographic methods. The epicuticle was found to be composed of two layers, one superficial membrane, and one thicker layer, measuring 1-2 μm. From the base layer spines or microtrichia projected. These were approximately 18 μm long and built like the remainder of the epicuticle. The spines and the base layer of the epicuticle contained vertical canals which in undecalcified sections accomodated columns of crystals. These canals were the only location in which minerals occurred in the epicuticle. In decalcified preparations filamentous strands were observed in the canals. Elsewhere in the epicuticular tissue no fibrillar structure was observed. The canals and their contents seemed to extend across the junctional zone between the epicuticle and the exocuticle.  相似文献   

11.
B Zimmermann 《Acta anatomica》1992,145(3):277-282
Mineralization at collagen fibrils is regulated by glycosaminoglycans (GAG). Alterations in proteoglycan composition during mineralization as well as inhibition of mineralization by GAGs are well documented. Collagen-GAG interactions during desmoid osteogenesis in fetal rat calvariae were investigated ultrastructurally by means of different fixation techniques. Mineralization was restricted to the collagen of the osteoid at the ectocranial side. Beyond the osteoid, one layer containing degenerated cells was found, followed by sheets of healthy osteoblasts with nonmineralized collagen fibrils. These fibrils were ordered in bundles, but were irregularly arranged in the mineralized osteoid. After fixation in glutaraldehyde-ruthenium red (GA-RR), small RR-positive granules were periodically attached to the fibrils of the nonmineralized collagen. These granules were absent at collagen in the mineralized osteoid. Periodically bound granules (periodicity of 62 nm) could clearly be demonstrated along collagen fibrils by pretreatment with the positively charged protamine sulfate and subsequent fixation in GA-RR in the nonmineralized collagen. In the mineralized osteoid, however, these granules were present, but periodic binding was missing. Heparin pretreatment followed by fixation in GA-RR revealed periodically bound fine strands between collagen fibrils running parallel in the nonmineralized collagen; these threads were absent in the mineralizing osteoid. Restriction of mineralization to osteoid at the mineralization border may be reflected by the observed changes in GAG binding to collagen fibrils within the osteoid of developing fetal calvariae in contrast to binding to collagen in nonmineralized areas.  相似文献   

12.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

13.
Summary Various patterns of mineralization are found in the organism during fetal and postnatal development. Different findings and theories have been published in the literature with regard to the mechanisms of mineralization, many of which are controversely discussed. In the present study the different patterns of mineralization observed in the organoid culture system of fetal rat calvarial cells were investigated by electron microscopy. In organoid culture, calvarial cells grow and differentiate at high density, and deposition of osteoid and mineralization of the matrix occur to a very high extent. Different types of mineralization could be observed more or less simultaneously. It was found that hydroxyapatite crystals were formed at collagen fibrils as well as in the interfibrillar space. Mineralization was frequently seen in necrotic cells and cellular remnants as well as in extra-and intracellular vesicles. Addition of bone or dentin matrices or the artificial hydroxyapatite Interpore 200 to the cells caused an increased mineralization in the vicinity and on the surface of the matrices with and without participation of collagen. On previously formed mineralized nodules, an apposition of mineralizing material appeared due to matrix secretion by osteoblasts. It is concluded that initiation of mineralization occurs-at least in vitro-at every nucleation point under appropriate conditions. These mineralization foci enlarge by further apposition as well as by cellular secretion of a mineralizing matrix. Furthermore, cell necroses may liberate mineralizable vesicles. All these patterns of mineralization are the result of different activities of one cell type.  相似文献   

14.
Summary The question of the initial mineralization in the epiphyseal plate has been investigated to date in specimens prepared by conventional electron microscopical techniques. As conventional techniques can produce artifacts, either a loss of mineral substance or a secondary nucleation, the mineralization process was investigated using freeze dried, vacuum embedded growth cartilage which was neither contrasted nor stained and which had a very short contact with water.The prevailing theory that the first mineralization begins within extracellular matrix vesicles and that the mineralization outside these vesicles is a secondary process was confirmed. Mineralized matrix vesicles were found in the fully mineralized long septa down to the opening zone. In several cases a mineralization could be observed in those transverse septa in which organic substance was present between the cells. The typical radial arrangement of the apatitic needles and platelets in the matrix vesicles could be explained by the formation of a mineralization in an ionotropic gel, the orientation of the matrix macromolecules to be produced by a vectorial influx of calcium ions and phosphate groups coming from different directions. Thin strands of mineral substance with low contrast, which follow the direction of the longitudinal septum, were assumed to be the mineralized collagen fibrils. In several needles dot-like formations were seen and the distance between the middle of neighbouring dots was found to lie mainly in the range 30–56 Å, while the lateral separation distance between the middle of closely packed parallel chains and needles was found to lie mainly in the range 30-42 Å. Parallel periodic structures which could be visualized in apatitic chains and needles 20–40 Å in diameter were assumed to be the 8.2 Å-(100)-lattice planes of apatite, being an indication that these formations already possess criteria of the apatite lattice.We express our thanks to the Deutsche Forschungsgemeinschaft for financial support and to Dr. A. Boyde, London, for valuable discussions.  相似文献   

15.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

16.
Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.  相似文献   

17.
The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X‐ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X‐ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Dentin Matrix Protein 1 (DMP1), the essential noncollagenous proteins in dentin and bone, is believed to play an important role in the mineralization of these tissues, although the mechanisms of its action are not fully understood. To gain insight into DMP1 functions in dentin mineralization we have performed immunomapping of DMP1 in fully mineralized rat incisors and in vitro calcium phosphate mineralization experiments in the presence of DMP1. DMP1 immunofluorescene was localized in peritubular dentin (PTD) and along the dentin-enamel boundary. In vitro phosphorylated DMP1 induced the formation of parallel arrays of crystallites with their c-axes co-aligned. Such crystalline arrangement is a hallmark of mineralized collagen fibrils of bone and dentin. Interestingly, in DMP1-rich PTD, which lacks collagen fibrils, the crystals are organized in a similar manner. Based on our findings we hypothesize, that in vivo DMP1 controls the mineral organization outside of the collagen fibrils and plays a major role in the mineralization of PTD.  相似文献   

19.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

20.
Zhang X  Li Z  Zhu XX 《Biomacromolecules》2008,9(9):2309-2314
A polymer containing bile acid pendant groups was prepared by free-radical polymerization of the 3alpha-methacrylate derivative of cholic acid. The polymer formed fibrils of about 1 nm in diameter in aqueous media and further assembled into bundles or lamella plates, as observed by transmission electron microscopy. After immersing the fibrils in simulated body fluid with ion concentrations equivalent to those in human plasma, plate-like crystals formed on the surface of the fibril assembly. The diffraction pattern corresponding to the (001) plane of hydroxyapatite was identified by transmission electron microscopy and selected area electron diffraction. The plate-like, single crystal hydroxyapatite formed on such a polymeric assembly may be useful in the matrix design for biomimetic mineralization and in the development of scaffold materials for hard tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号