首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased intraocular pressure (IOP) has been considered to be an increased resistance of the aqueous humor outflow through the inner wall of Schlemm's canal (SC) and/or the juxtacanalicular tissue (JCT). The Rho GTPase-regulated actomyosin organization appears to be an important mechanistic determinant of aqueous humor outflow facility. Therefore, in this study, we have evaluated the effects of modulating Rho GTPase activity on actomyosin cytoskeletal organization, monolayer permeability/barrier function of human SC cells, and aqueous humor outflow facility in enucleated porcine eyes ex vivo. Human SC cells, isolated from cadaver eyes, were treated with either Rho GTPase activators such as thrombin and lysophosphatidic acid (LPA), or a specific inhibitor (C3-exoenzyme) of Rho GTPases. Treatment of SC cells with thrombin and LPA led to increased formation of stress fibers, focal adhesion, and increased myosin light chain phosphorylation, whereas treatment with C3-exoenzyme showed the opposite effects like H-7 and ECA, known for increasing the outflow facility in porcine eyes. The findings presented here suggest that LPA and thrombin, presumably through activation of Rho GTPase-mediated actomyosin cytoskeletal reorganization in SC cells, cause a decrease in monolayer permeability of SC cells as well as a decrease in outflow facility of porcine eyes in ex vivo. Our results suggest that decrease in aqueous humor outflow may be correlated better with the changes in cytoskeletal organizations of SC, which could be the prime locus of the outflow resistance.  相似文献   

2.
Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.  相似文献   

3.
Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.  相似文献   

4.
Glaucoma is a group of progressive optic neuropathies in which the axons in the optic nerve are injured, retinal ganglion cell numbers are reduced and vision is gradually and permanently lost. The only approved and effective way to treat glaucoma is to reduce the intraocular pressure (IOP). This is usually accomplished by surgical and/or pharmacological means. Drugs designed to reduce IOP target one or more of the parameters that maintain it. These parameters (collectively known as aqueous humor dynamics) are the production rate of aqueous humor, the pressure in the episcleral veins and the drainage of aqueous humor through the trabecular or uveoscleral outflow pathways. Intraocular pressure lowering drugs can be classified as inflow or outflow depending on whether they reduce aqueous humor inflow into the anterior chamber or improve aqueous humor outflow from the anterior chamber. Inflow drugs, like β adrenergic antagonists and carbonic anhydrase inhibitors, reduce the rate of aqueous humor production. Outflow drugs, like prostaglandin analogs, cholinergic agonists and sympathomimetics, increase the rate of drainage through the uveoscleral outflow pathway and/or increase the facility of outflow through the trabecular meshwork. Some drugs have mixed inflow/outflow effects. This review summarizes the pharmacological treatments for glaucoma in use today and some new drugs showing potential for use in the future.  相似文献   

5.
《Autophagy》2013,9(1):122-124
Primary open angle glaucoma (POAG) is a late onset disease usually accompanied by elevated intraocular pressure (IOP) that results from the failure of the trabecular meshwork (TM) to maintain normal levels of aqueous humor outflow resistance. Cells in the TM are subjected to chronic oxidative stress through reactive oxygen species (ROS) present in the aqueous humor (AH) and generated by normal metabolism. Exposure to ROS is thought to contribute to the morphological and physiological alterations of the outflow pathway in aging and POAG. Our results indicate that chronic exposure of TM cells to oxidative stress causes the accumulation of nondegradable material within the lysosomal compartment leading to diminished lysosomal activity and increased SA-β-Gal expression. Because the lysosomal compartment is responsible for maintaining general cellular turnover, such impaired activity may lead to a progressive cellular decline in the TM cell function and thus contribute to the progression of POAG.  相似文献   

6.
Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design and delivery of improved treatments for glaucoma patients.  相似文献   

7.
Measurements were made of the osmotic pressure of plasma, and of aqueous humor taken from the anterior chamber of the right and left eyes and from the posterior chamber of unanesthetized rabbits. Aqueous humor from the anterior chamber was found to be hypertonic to the plasma by approximately 3 mM/liter equivalent of sodium chloride. The aqueous humor from the anterior and posterior chambers of the right and left eyes was isotonic. The concentration of chloride in the anterior and posterior chambers was the same. The concentration of all the major components of the aqueous humor and plasma has been determined by chemical analysis on fluid samples obtained from unanesthetized rabbits at approximately the same time. The calculated osmotic pressure of the total of these substances in terms of sodium chloride equivalent agrees to within better than 1 per cent of the total osmotic pressure as measured experimentally. The distribution of some individual anions and cations of the aqueous humor and plasma was determined. This distribution is widely different from that which would obtain at a state of equilibrium. The positive and negative charges carried by the ions in the aqueous humor were approximately equal. Sources of error in the experiments are discussed.  相似文献   

8.
Udono T  Takahashi K  Abe T  Shibahara S  Tamai M 《Peptides》2002,23(10):1865-1868
To clarify possible involvement of adrenomedullin in the pathophysiology of inflammation of eyes, we measured immunoreactive-adrenomedullin concentrations in the aqueous humor and plasma obtained from 14 control subjects and 56 patients with uveitis or vitreoretinal disorders. Immunoreactive-adrenomedullin levels in the aqueous humor were significantly elevated in patients with active uveitis, proliferative vitreoretinopathy and proliferative diabetic retinopathy, as compared with control subjects. The plasma immunoreactive-adrenomedullin levels were not significantly correlated with the aqueous humor levels. These findings suggest that adrenomedullin produced locally in the eyes is involved in the pathophysiology of uveitis and some proliferative vitreoretinal disorders.  相似文献   

9.
Tissue plasminogen activator, a serine protease encoded by the PLAT gene is present in the trabecular meshwork (TM) and other ocular tissues and has been reported to be downregulated by treatment with steroids in vitro. Steroids are known to cause changes in outflow facility of aqueous humor in many species. In the present study, we tested whether overexpression of PLAT can prevent and/or reverse the outflow facility of mouse eyes treated with steroids. Animals received bilateral injection with 20 µl of triamcinolone acetonide (TA) (40mg/ml) suspension subconjunctivally to induce outflow facility changes. Some animals received unilateral intracameral injection with 2 µl of adenoviral suspension [3-4x1012 virus genomes per milliliter (vg/ml)] carrying sheep PLAT cDNA (AdPLAT) either concurrently with TA injection or one week after TA injection, whereas others received bilateral intracameral injection with 2µl of adenoviral suspension (9x1012 vg/ml) carrying no transgene (AdNull) concurrently with TA injection. Animals were sacrificed one week after AdPLAT or AdNull treatment. Endogenous mRNA expression levels of mouse PAI-1 and MMP-2, -9 and -13 were also measured using qRT-PCR. Outflow facility one week after AdPLAT administration was increased by 60% and 63% respectively for animals that had not or had been pretreated with steroids. Overexpression of PLAT significantly upregulated expression of PAI-1, MMP-2, -9 and -13 compared to the levels found in TA only treated eyes. These findings suggest that overexpression of PLAT in TM of mouse eyes can both prevent and reverse the decrease in outflow facility caused by steroid treatment and is associated with upregulation of MMPs.  相似文献   

10.
Lipoproteins and lipids in cow and human aqueous humor   总被引:1,自引:0,他引:1  
The aqueous humor of the cow and human was examined for the presence of lipids and lipoproteins. Whole aqueous humor collected from cow eyes within 30 min after slaughter contained about 1 micrograms/ml of cholesterol and phospholipid. Upon fractionation of bovine aqueous into various density ranges following sequential ultracentrifugations , about 99% of the total cholesterol was recovered at a density of greater than 1.063. Apolipoprotein A-I, the major apolipoprotein of high-density lipoprotein (HDL), was the major protein seen upon electrophoresis of the 1.063-1.21 fraction. Particles of about 80 A mean diameter were observed by electron microscopy in the 1.063-1.21 fraction. Using rocket immunoelectrophoresis, a concentration of about 2 micrograms/ml of apolipoprotein A-I was measured in cow aqueous humor and slightly less in aqueous humor from the adult human collected post-mortem (1-36 h). In conclusion, aqueous humor of cow and man appears to contain about 4 micrograms/ml of HDL and it is likely the sole lipoprotein in this fluid. The potential importance of this lipoprotein in supplying lipids to the lens is discussed.  相似文献   

11.
Transforming growth factor-beta 2 (TGF-β2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-β2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-β2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-β2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-β2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm’s canal (MSC) cell monolayers was decreased by TGF-β2 treatment. SAHA inhibited the effects of TGF-β2 on the permeability of these cells. TGF-β2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-β2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-β2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-β signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-β. These results imply that SAHA prevents TGF-β2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-β signaling in TM and MSC cells.  相似文献   

12.
Deposition of extracellular matrix (ECM) in trabecular meshwork, such as fibronectin, collagen IV, elastin. leads to increased resistance of trabecular meshwork in primary open angle glaucoma (POAG). Connective tissue growth factor (CTGF) is known to regulate the ECM deposits. In this study, we detect the effect of adenovirus conducted CTGF (Adv-CTGF) transfection on either the expression of ECM components or aqueous humor outflow facility. Adv-CTGF was used to transfect rat trabecular meshwork cells in vivo and in vitro. Aqueous humor outflow facility was test by microbeads perfusion. Protein expression of CTGF, fibronectin, and collagen IV was determined using Western blot. In the Adv-CTGF group, the outflow facility displayed a significant decrease from baseline. It appears as though the transfection with Adv-CTGF significantly affects the aqueous humor outflow pattern. A negative correlation between IOP and PEFL indicated that a decrease in the area of bead deposition corresponded to an overall decrease of outflow, leading to an elevated IOP. Adv-CTGF can enhance the expression of CTGF, fibronectin and collagen IV. CTGF is the novel target for treatment of POAG. It is necessary to further study to test inhibition of CTGF expression for treatment of POAG.  相似文献   

13.
Elevated intraocular pressure is the main risk factor in primary open-angle glaucoma, involving an increased resistance to aqueous humor outflow in the juxtacanalicular region of the conventional outflow pathway which includes the trabecular meshwork (TM) and the inner wall of Schlemm's canal (SC). Previously, sphingosine-1-phosphate (S1P) was shown to decrease outflow facility in porcine and human eyes, thus increasing outflow resistance and intraocular pressure. Owing to S1P's known effect of increasing barrier function in endothelial cells and the robust expression of the S1P? receptor on the inner wall of SC, we hypothesized that S1P? receptor activation promotes junction formation and decreases outflow facility. The effects of subtype-specific S1P receptor compounds were tested in human and porcine whole-eye perfusions and human primary cultures of SC and TM cells to determine the receptor responsible for S1P effects on outflow resistance. The S1P?-specific agonist SEW2871 failed to both mimic S1P effects in paired human eye perfusions, as well as increase myosin light chain (MLC) phosphorylation in cell culture, a prominent outcome in S1P-treated SC and TM cells. In contrast, the S1P? antagonist JTE-013, but not the S1P? or S1P?,? antagonists, blocked the S1P-promoted increase in MLC phosphorylation. Moreover, JTE-013 prevented S1P-induced decrease in outflow facility in perfused human eyes (P < 0.05, n = 6 pairs). Similarly, porcine eyes perfused with JTE-013 + S1P did not differ from eyes with JTE-013 alone (P = 0.53, n = 3). These results demonstrate that S1P? , and not S1P? or S1P?, receptor activation increases conventional outflow resistance and is a potential target to regulate intraocular pressure.  相似文献   

14.
Our hypothesis is that the proteins in aqueous humor may be involved in the regulation of outflow facility through the trabecular meshwork and uveoscleral meshwork. In this study, we analyzed the profile of heparin-binding proteins present in porcine aqueous humor to identify and characterize secretory proteins with a binding affinity for heparin. A single step involving heparin-sepharose affinity chromatography of porcine aqueous humor yielded a approximately 60 kDa protein as the major heparin-binding species. This protein was specifically eluted from the column by heparin. The N-terminal sequence and immunological cross reactivity of this protein confirmed its identity as antithrombin III. Aqueous humor from different species, as well as cells from human trabecular meshwork, Schlemm's canal, and lens epithelium, contained detectable amounts of antithrombin III. Based on its known anticoagulative function in endothelial cells and effects on the production of prostacyclin, it is reasonable to speculate that antithrombin III present in aqueous humor might influence the physiology of the trabecular and uveoscleral meshwork and thereby regulate intraocular pressure.  相似文献   

15.
Human ocular toxocariasis is diagnosed using ophthalmologic and immunologic examinations. Many researchers have suggested that intraocular parasite-specific antibody levels are indicative of ocular toxocariasis, but little is known about the time course of the changes in these levels. We therefore investigated the anti-Toxocara canis antibody profile in the aqueous humor in an animal model of ocular toxocariasis. We intravitreally injected T. canis larvae into the right eye of 4 rabbits; 2 rabbits were orally administered T. canis eggs. We collected serum, aqueous humor, and tear samples weekly and determined the serum and aqueous humor levels of anti-T. canis immunoglobulin (Ig)G, IgA, IgM, and IgE antibodies and the tear IgG antibody level by enzyme-linked immunosorbent assay (ELISA). The severity of vitreous opacity and the aqueous humor IgG levels (measured using optical density [OD]) changed concordantly in the larvae-injected eyes; the OD exceeded 0.1 from 2–4 weeks after infection and remained elevated during active intraocular inflammation. However, the aqueous humor IgG levels were also elevated in 6 out of 8 eyes without intraocular larvae in both groups, and were low in 1 eye with live intravitreal larvae. In contrast, the serum IgG and IgM levels and the tear IgG levels increased in all rabbits, regardless of the presence of intraocular inflammation. Vitreous opacity occurred in all intravitreally infected eyes, but significant histopathological evidence of retinal damage was not detected. Thus, besides the presence of intraocular larvae, some other factors in the host may be required for the development of retinal lesions.  相似文献   

16.
Intraocular pressure is directly dependent on aqueous humor flow into, and resistance to flow out of, the eye. Adenosine has complex effects on intraocular pressure. Stimulation of A1 and A2A adenosine receptors changes intraocular pressure oppositely, likely through opposing actions on the outflow of aqueous humor. While the cellular sites regulating outflow resistance are unknown, the cells lining the inner wall of Schlemm's canal (SC) are a likely regulatory site. We applied selective adenosine receptor agonists to SC cells in vitro to compare the responses to A1 and A2A stimulation. Parallel studies were conducted with human inner-wall SC cells isolated by a novel enzyme-assisted technique and with cannula-derived mixed inner- and outer-wall SC cells. A1 agonists increased whole cell currents of both inner-wall and cannula-derived SC cells. An A2A agonist reduced currents most consistently in specifically inner-wall SC cells. Those currents were also increased by A2B, but not consistently affected by A3, stimulation. A1, A2A, and A3 agonists all increased SC-cell intracellular Ca2+. The electrophysiological results are consistent with the possibility that inner-wall SC cells may mediate the previously reported modulatory effects of adenosine on outflow resistance. The results are also consistent with the presence of functional A2B, as well as A1, A2A, and A3 adenosine receptors in SC cells. intraocular pressure; aqueous humor outflow; ion transport; adenosine agonists  相似文献   

17.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide, with elevated intraocular pressure as an important risk factor. Increased resistance to outflow of aqueous humor through the trabecular meshwork causes elevated intraocular pressure, but the specific mechanisms are unknown. In this study, we used genome-wide SNP arrays to map the disease gene in a colony of Beagle dogs with inherited POAG to within a single 4 Mb locus on canine chromosome 20. The Beagle POAG locus is syntenic to a previously mapped human quantitative trait locus for intraocular pressure on human chromosome 19. Sequence capture and next-generation sequencing of the entire canine POAG locus revealed a total of 2,692 SNPs segregating with disease. Of the disease-segregating SNPs, 54 were within exons, 8 of which result in amino acid substitutions. The strongest candidate variant causes a glycine to arginine substitution in a highly conserved region of the metalloproteinase ADAMTS10. Western blotting revealed ADAMTS10 protein is preferentially expressed in the trabecular meshwork, supporting an effect of the variant specific to aqueous humor outflow. The Gly661Arg variant in ADAMTS10 found in the POAG Beagles suggests that altered processing of extracellular matrix and/or defects in microfibril structure or function may be involved in raising intraocular pressure, offering specific biochemical targets for future research and treatment strategies.  相似文献   

18.
The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular outflow pathway enhances release of matrix metalloproteinases (MMPs) from trabecular meshwork (TM) cells, reducing resistance to outflow of aqueous humor to lower IOP. These opposing actions are thought to be initiated by cellular release of ATP and its ectoenzymatic conversion to adenosine. This view is now supported by our identification of six ectoATPases in trabecular meshwork (TM) cells and by our observation that external ATP enhances TM-cell secretion of MMPs through ectoenzymatic formation of adenosine. ATP release is enhanced by cell swelling and stretch. Also, enhanced ATP release and downstream MMP secretion is one mediator of the action of actin depolymerization to reduce outflow resistance. Inflow and outflow cells share pannexin-1 and connexin hemichannel pathways for ATP release. However, vesicular release and P2X(7) release pathways were functionally limited to inflow and outflow cells, respectively, suggesting that blocking exocytosis might selectively inhibit inflow, lowering IOP.  相似文献   

19.
To protect the eye from ultraviolet phototoxicity caused by free radicals, ocular components such as the aqueous humor accumulate antioxidants, such as the carotenoids. Lutein and zeaxanthin are the only carotenoids known to be present in the aqueous humor. Due to the small sample volume, pooling of samples from an undesirable large number of animals is often required for sufficient sensitivity and statistically significant differences to be achieved. In this paper we present a rapid, sensitive and robust packed capillary high-performance liquid chromatographic visible detection method for the quantification of lutein and zeaxanthin in the aqueous humor of single mouse eyes.  相似文献   

20.
Many experimental studies have indicated that the intraocular pressure is subject to mediation by adrenergic mechanisms affecting both the rate of formation of the aqueous humor and the resistance of the pathway through which the aqueous humor flows out of the eye. Thus, for example, the role of adrenergic drugs in glaucoma therapy is well known. How the mediation is accomplished has not been clarified in detail. Several possible mechanisms have been suggested, and all may indeed be involved. The present study is concerned with the basis and mathematical formulation of one of them and the consequences with respect to aqueous dynamics. The analysis leads to expressions for the aqueous outflow resistance and the formation rate, as well as other quantities of interest. The theoretical behavior is shown to compare favorably with the results of infusion studies and various other experiments, and to provide a unified picture of much of the pressure-flow behavior of both the living and the dead eye. This investigation was supported by U.S. Public Health Service Research Grant NS 07226 from the National Institute of Neurological Diseases and Stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号