首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
We carried out magnetic and nonmagnetic experiments on fresh, upper-beak skin tissue samples isolated from six pairs of homing pigeons to test whether the tissue contains magnetite particles. Results of (1) room-temperature isothermal remanent magnetization (IRM) acquisition and alternating field (AF) demagnetization, (2) low-temperature demagnetization of saturation IRM acquired at 5 K in a field of 5 tesla (T) (SIRM5 K) after zero-field cooled (ZFC) and field cooled (FC) treatments, and (3) cycling of the saturation IRM acquired at 300 K in a field of 5 T (SIRM300 K) between 5 and 300 K, indicate the presence of magnetite in the measured samples. A significant loss of SIRM5 K below 20 K suggests the dominance of superparamagnetic (SPM) particles. The SIRM acquisition capacity of the female pigeon is stronger than that of the male pigeon in all four measured pairs, suggesting for the first time that the magnetite concentration is probably sex dependent. Light microscopic observation on the histological sections stained with Prussian Blue detected the presence of some tiny, dotted, dark-blue staining Fe3+ aggregates (size 1–4 μm) located directly beneath the subcutis within strands of connective tissue, nearby the rim of the regions full of red nuclei. The results of this study support the idea that homing pigeons may have a magnetite-based receptor, which potentially could be used for sensing the Earth’s magnetic field during navigation.  相似文献   

2.
Fourteen samples of human hippocampal tissue were resected during amygdalo-hippocampectomies performed on patients suffering from Mesial Temporal Lobe Epilepsy (MTLE). In addition, eight tissue samples from the hippocampus, cortex basalganglia, cerebellum and leptomeninges were resected from cadavers during routine autopsy and were not chemically fixed. All samples were preserved in liquid nitrogen and magnetic properties were measured at 77K and 273K. Measurements indicate that there are no systematic variations in magnetic particle concentrations or magnetic properties between MTLE patients and non-pathologic tissue from the cadavers. The presence of superparamagnetic particles can be inferred due to differences in the saturation remanence acquired at 77K and 273K. This is a further indication that biogenic magnetite and/or maghemite present in the human brain likely is not primarily associated with geomagnetic field sensing as it is known to occur in other organisms  相似文献   

3.
Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non‐migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating‐field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM1T_brain) of migratory species is higher than those of non‐migratory species. Furthermore, the SIRM1T_brain of migratory bats is greater than their SIRM1T_skull. Low‐temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field. Bioelectromagnetics 31:499–503, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Excess iron accumulation in the brain has been shown to be related to a variety of neurodegenerative diseases. However, identification and characterization of iron compounds in human tissue is difficult because concentrations are very low. For the first time, a combination of low temperature magnetic methods was used to characterize iron compounds in tumour tissue from patients with mesial temporal lobe epilepsy (MTLE). Induced magnetization as a function of temperature was measured between 2 and 140 K after cooling in zero-field and after cooling in a 50 mT field. These curves reveal an average blocking temperature for ferritin of 10 K and an anomaly due to magnetite at 48 K. Hysteresis measurements at 5 K show a high coercivity phase that is unsaturated at 7 T, which is typical for ferritin. Magnetite concentration was determined from the saturation remanent magnetization at 77 K. Hysteresis measurements at various temperatures were used to examine the magnetic blocking of magnetite and ferritin. Our results demonstrate that low temperature magnetic measurements provide a useful and sensitive tool for the characterisation of magnetic iron compounds in human tissue.Published online: March 2005  相似文献   

5.
Fishes representing the main groups of teleosts have been investigated for magnetic material by susceptibility measurements. All the investigated species contain magnetic material. Bone samples from the skull and the vertebral column contain magnetic particles which yield a saturation magnetization in the range 10(-4) emu g-1 to 10(-3) emu g-1 in a sample. The localization of the magnetization is diffuse within the tissues connected to the bone. There are no significant differences between the amounts of magnetic material that are found in migrating or more stationary species.  相似文献   

6.
Magnetometry analysis of brain tissue sub-samples from two neuroferritinopathy patients provides a preliminary indication that the amount of magnetic iron compounds associated with this rare disease is significantly larger than in age/sex-matched controls. The primary iron compounds contributing to the remnant magnetization of the tissue above 50 K and at body temperature are both blocked and superparamagnetic (SPM) biogenic magnetite (Fe3O4) and/or maghemite (gamma-Fe2O3). The concentration of SPM magnetite is significant and appears to be proportional to the concentration of ferritin, which varies with progression of the disease. The mutated ferritin protein appears to be responsible for the presence of iron oxide nano-particules, which in turn could be responsible for extensive damage in the brain.  相似文献   

7.
Magnetopneumography (MPG) as a non‐invasive method for pneumoconiosis diagnosis has been developed to evaluate the load and spatial distribution of particles within the human lungs through scanning of remanent magnetic fields after magnetization of the subject in a strong direct current field. The measurement of particle spatial distribution is very important for pneumoconiosis diagnosis because localized deposits may be associated with some pathological changes such as pulmonary fibrosis. Previous research found that loads of magnetite particles were proportional to their magnetic dipole moments. The three‐dimensional (3D) MPG magnetic dipole model (MDM) proposed in this paper and based on Biot–Savart Law and matrix manipulation provides a means of precise measurement of the particle distribution and load amount. A styrofoam + magnetite powder phantom with magnetization was laid on a nonmagnetic board. Two first‐order fluxgate gradiometers with 10–12 T sensitivity were coaxially applied over and under the phantom and used for scanning remanent magnetic fields. This paper provides validation results using 3D MPG MDM through two experiments. The overall error of the simulation results is 0.2–2.7% in the center and 7.28–9.42% in the corners of the subject. Finally, this paper gives clinical experiments with a welder suffering stage‐II pneumoconiosis and states that the 3D MPG MDM shows similar results to X‐ray chest films in pneumoconiosis diagnosis. The results suggest that the 3D MPG MDM is potentially a reasonable and accurate algorithmic model to inversely track the load amount and distribution of magnetite particles within the lungs. Bioelectromagnetics. 2019;40:472–487. © 2019 Wiley Periodicals, Inc  相似文献   

8.
Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated.  相似文献   

9.
The presence of a narrow shape and size distribution for magnetite crystals within magnetotactic organisms suggests strongly that there are species-specific mechanisms that control the process of biomineralization. In order to explore the extent of this control, cultures of Aquaspirillum magnetotacticum in the exponential growth phase were exposed to increasing magnetic pulses with the aim of separating cell populations on the basis of their magnetic coercivities. Isothermal remanent magnetization and anhysteretic remanent magnetization studies were performed with freeze-dried magnetic cells after the remagnetization treatment. Subpopulations of A. magnetotacticum that showed an increase in coercivity correlated with the intensity of the magnetic pulses were isolated. After successive subcultures of the remaining north-seeking cells, a maximum bulk coercivity (Hbmax) of 40 mT was obtained after treatment with a 55-mT pulse. Although we obtained A. magnetotacticum variants displaying higher coercivities than the wild-type strain, changes in crystal size or shape of the magnetite crystals were below reliable detection limits with transmission electron microscopy. Attempts to shift the coercivity towards higher values caused it to decrease, a change which was accompanied by an increase in magnetostatic interactions of the magnetosome chains as well as an increase in the cell population displaying an abnormal distribution of the magnetosome chains. Ultrastructural analyses of cells and magnetosomes revealed the appearance of cystlike bodies which occasionally contained magnetosomes. The increase in cystlike cells and abnormal magnetosome chains when higher magnetic pulses were used suggested that magnetosomes were collapsing because of stronger interparticle magnetostatic forces.  相似文献   

10.
Han Y  Liu C  Zhou D  Li F  Wang Y  Han X 《Bioelectromagnetics》2011,32(3):226-233
The teeth of the Polyplacophora Chiton Acanthochiton Rubrolinestus contain biomineralized magnetite crystallites whose biological functions in relation to structure and magnetic properties are not well understood. Here, using superconducting quantum interference device (SQUID) magnetometry, we find that the saturation magnetization (σ(s)) and the Verwey transition temperature (T(v)) of tooth particles are 78.4 emu/g and 105 K, respectively. These values are below those of the stoichiometric magnetite. An in situ examination of the structure of the magnetite-bearing region within an individual tooth using high-resolution transmission electron microscopy indicates magnetite microcrystals form electron dense polycrystalline sheets with typical lengths of about 800 nm and widths of about 150 nm. These polycrystalline sheets are arranged regularly along the longitudinal direction of the tooth cutting surface. In addition, the crystallites in polycrystalline sheets take on generally good crystallinity. The magnetic microstructures of in situ magnetic force microscopy demonstrate that the [111] easy direction of magnetite microcrystals are aligned along the length of the tooth, whereas the [111] direction is parallel to the thickness of the tooth. Both M?ssbauer spectra and magnetization versus temperature measurements under field cooled and zero-field cooled conditions do not detect superparamagnetic magnetite crystallites in the mature major lateral tooth particles of this chiton.  相似文献   

11.
To enter the realm of human gene therapy, a novel drug delivery system is required for efficient delivery of small molecules with high safety for clinical usage. We have developed a unique vector "HVJ-E (hemagglutinating virus of Japan-envelope)" that can rapidly transfer plasmid DNA, oligonucleotide, and protein into cells by cell-fusion. In this study, we associated HVJ-E with magnetic nanoparticles, which can potentially enhance its transfection efficiency in the presence of a magnetic force. Magnetic nanoparticles, such as maghemite, with an average size of 29 nm, can be regulated by a magnetic force and basically consist of oxidized Fe which is commonly used as a supplement for the treatment of anemia. A mixture of magnetite particles with protamine sulfate, which gives a cationic surface charge on the maghemite particles, significantly enhanced the transfection efficiency in an in vitro cell culture system based on HVJ-E technology, resulting in a reduction in the required titer of HVJ. Addition of magnetic nanoparticles would enhance the association of HVJ-E with the cell membrane with a magnetic force. However, maghemite particles surface-coated with heparin, but not protamine sulfate, enhanced the transfection efficiency in the analysis of direct injection into the mouse liver in an in vivo model. The size and surface chemistry of magnetic particles could be tailored accordingly to meet specific demands of physical and biological characteristics. Overall, magnetic nanoparticles with different surface modifications can enhance HVJ-E-based gene transfer by modification of the size or charge, which could potentially help to overcome fundamental limitations to gene therapy in vivo.  相似文献   

12.
本文分析了山西高原土壤耕作层(0-20cm)25个样品的磁性,用GIS空间分析方法,得出土壤磁化率平面分布等值线图和空间三维模型。磁化率空间分布机理如下:首先,强烈的人为影响使土壤中磁性矿物人为来源占有重要地位。第二,土壤磁性矿物以亚铁磁性的磁铁矿和磁赤铁矿为主导。第三,土壤磁化率极值差及其与母质之间的差异均受广泛而较均一的黄土母质的影响。第四,晋西北和晋中等区域出现土壤磁化率高值区域。第五,人为作用强烈影响掩盖了气温、降水等气候因子对土壤磁化率的作用。  相似文献   

13.
The motions of magnetic particles contained within organelles of living cells were followed by measuring magnetic fields generated by the particles. The alignment of particles was sensed magnetometrically and was manipulated by external fields, allowing non-invasive detection of particle motion as well as examination of cytoplasmic viscoelasticity. Motility and rheology data are presented for pulmonary macrophages isolated from lungs of hamsters 1 d after the animals had breathed airborne gamma-Fe2O3 particles. The magnetic directions of particles within phagosomes and secondary lysosomes were aligned, and the weak magnetic field produced by the particles was recorded. For dead cells, this remanent field was constant, but for viable macrophages, the remanent field decreased rapidly so that only 42% of its initial magnitude remained 5 min after alignment. A twisting field was applied perpendicular to the direction of alignment and the rate at which particles reoriented to this new direction was followed. The same twisting was repeated for particles suspended in a series of viscosity standards. Based on this approach, the low-shear apparent intracellular viscosity was estimated to be 1.2-2.7 X 10(3) Pa.s (1.2-2.7 X 10(4) poise). Time-lapse video microscopy confirmed the alignment of ingested particles upon magnetization and showed persistent cellular motility during randomization of alignment. Cytochalasin D and low temperature both reduced cytoplasmic activity and remanent-field decay, but affected rheology differently. Magnetic particles were observed in association with the microtubule organizing center by immunofluorescence microscopy; magnetization did not affect microtubule distribution. However, both vimentin intermediate filaments and f-actin reorganized after magnetization. These data demonstrate that magnetometry of isolated phagocytic cells can probe organelle movements, rheology, and physical properties of the cytoskeleton in living cells.  相似文献   

14.
Sensing the magnetic field has been established as an essential part of navigation and orientation of various animals for many years. Only recently has the first detailed receptor concept for magnetoreception been published based on histological and physical results. The considered mechanism involves two types of iron minerals (magnetite and maghemite) that were found in subcellular compartments within sensory dendrites of the upper beak of several bird species. But so far a quantitative evaluation of the proposed receptor is missing. In this article, we develop a theoretical model to quantitatively and qualitatively describe the magnetic field effects among particles containing iron minerals. The analysis of forces acting between these subcellular compartments shows a particular dependence on the orientation of the external magnetic field. The iron minerals in the beak are found in the form of crystalline maghemite platelets and assemblies of magnetite nanoparticles. We demonstrate that the pull or push to the magnetite assemblies, which are connected to the cell membrane, may reach a value of 0.2 pN -- sufficient to excite specific mechanoreceptive membrane channels in the nerve cell. The theoretical analysis of the assumed magnetoreceptor system in the avian beak skin clearly shows that it might indeed be a sensitive biological magnetometer providing an essential part of the magnetic map for navigation.  相似文献   

15.
H. Pardoe  J. Dobson 《Biometals》1999,12(1):77-82
Isothermal remanent magnetization was measured in 14 Wistar and five Porton rat brains. Results indicate that magnetic iron biominerals are present in most of the samples and the formation of these minerals in the rat brain is influenced by transfusion and dietary iron loading when compared to control samples. The high level of consistency in the concentrations and the lack of magnetic material in several of the measured samples indicates that a genetic mechanism may be responsible for magnetic iron biomineralization in the rat brain. Comparison with human studies indicates that extrapolation of the results of rat studies of electromagnetic field bioeffects may not be accurately extrapolated to humans in all cases  相似文献   

16.
Magnetic polarity stratigraphies from ODP Leg 177 ‘high resolution’ sites indicate Brunhes sedimentation rates in the 12–25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnetite and authigenic growth of iron sulfides introduces a high coercivity diagenetic remanence carrier (pyrrhotite). The change in pore water sulfate with depth in the sediment tends to be in step with the decrease in magnetization intensity, indicating the link between sulfate reduction and magnetite dissolution. Shipboard pass-through magnetometer data are generally very noisy due to a combination of weak magnetization intensities, drilling-related core deformation, and the influence of authigenic iron sulfides. Post-cruise progressive demagnetization of discrete samples aids the magnetostratigraphic interpretation, as these measurements are less influenced by low magnetization intensities and drilling-related deformation. The magnetostratigraphic interpretations provide much-needed calibration for biostratigraphic events in the high latitude southern oceans. Apart from the ODP Hole 745B (Kerguelen Plateau), published Plio-Pleistocene magnetostratigraphies from ODP sites in the Southern Ocean are poorly constrained. For this reason, we compare interpolated ages of 11 radiolarian events and one diatom event that occur at Hole 745B and Leg 177 sites.  相似文献   

17.
Ferrimagnetic particles suspended in saline were instilled intratracheally into the lungs of Syrian golden hamsters. The particles were magnetized and aligned by applying an external magnetic field. Upon removal of the external field, the particles produced a remanent magnetic field from the lungs which decayed due to random misalignment of the particles (relaxation). Magnetization and relaxation measurements were performed immediately after instillation, then repeatedly during the first 24 h, and finally at intervals of several days up to 30 days after the instillation. The size of the initial remanent magnetic field immediately following each external magnetization is a measure of the amount of iron oxide in the lungs. It decreased with time, reflecting particle clearance. The rate of relaxation increased steeply during the first 12 h after the instillation and decreased slowly between the 5th and 30th day. Changes in the location of particles from extracellular to intracellular sites and movements from ectoplasmic to endoplasmic sites within cells may be responsible for the observed changes in relaxation rates with time.  相似文献   

18.
Ferromagnetic resonance and SQUID magnetometry have been used to study magnetic material in the head with antennae, thorax, and abdomen of Solenopsis interrupta ants. The temperature dependence of the head with antennae using both techniques was measured. Room-temperature spectra and saturation magnetization were used to compare the magnetic material amount in the ant body parts. Both techniques show that the highest magnetic material fraction is in the head with antennae. The ordering temperature is observed at 100 ± 20 K for the ferromagnetic resonance spectra HF component. The estimated magnetic anisotropy constant K and g-values at room temperature are in good agreement with magnetite, supporting this material as the main magnetic particle constituent in the Solenopsis interrupta head with antenna. Particle diameters of 26 ± 2 nm and smaller than 14 nm were estimated. This work suggests that the head with antenna of the Solenopsis interrupta ant contains organized magnetic material and points to it as a good candidate as a magnetic sensor.  相似文献   

19.
Use of superparamagnetic particles for isolation of cells   总被引:10,自引:0,他引:10  
This report describes the preparation and characterization of synthetic ferritin-like particles produced by precipitation of magnetite from a mixture of ferrous and ferric ions in the presence of dextran. The 3-nm diameter particles, containing magnetite cores surrounded by chemisorbed dextran, had a magnetization of 46.7 emu/g of iron with M?ssbauer quadrupole splitting of 2 delta = 0.76 mm/s. The application of these particles as a laboratory reagent for isolation of Legionella from other water bacteria was successfully tested. A 400-fold enrichment for Legionella was obtained.  相似文献   

20.
Magnetization measurements of the European eel Anguilla anguilla demonstrated the presence of magnetic material concentrated in the region of the mandibular canals of the lateral line system. The data suggest that the material is magnetite, has a size suitable for magnetoreception and is of biogenic origin. The presence of magnetic particles in the lateral line system is discussed in relation to their possible role in allowing the fish to orientate with respect to the geomagnetic field during their extensive oceanic spawning migrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号