首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.  相似文献   

2.
Microsatellites are DNA elements composed of short tandem repeats of 1-5bp. These sequences are particularly prone to frameshift mutation by insertion-deletion loop formation during replication. The mismatch repair system is responsible for correcting these replication errors, and microsatellite mutation rates are significantly elevated in the absence of mismatch repair. We have investigated the effect of varying the number of repeats in a (CA)n microsatellite on mutation rates in cultured mammalian cells proficient or deficient in mismatch repair. We have also compared the relative rates of single-repeat insertions and deletions in these cells. Two plasmid vectors were constructed for each repeat unit number (n=8, 17, and 30), such that the microsatellites, placed upstream of a bacterial neomycin resistance gene (neo), disrupted the reading frame of the gene in the (-1) or (+1) direction. Plasmids were introduced separately into the cells, where they integrated into the cellular genome. Mutation rates were determined by selection of clones with frameshift mutations in the microsatellite that restored the reading frame of the neo gene. We found that mutation rates were significantly higher for (CA)17 and (CA)30 tracts than for (CA)8 tracts in both mismatch repair proficient (mouse) and deficient (human) cells. A mutational bias favoring insertions was generally observed. In both (CA)17 and (CA)30 tracts, single-repeat insertion rates were higher than single-repeat deletion rates with or without mismatch repair; deletions of multiple repeat units (> or =8bp) were observed in these tracts, where as deletions this large were not found in the (CA)8 tract. Single-repeat mutations of both types were made at similar rates in (CA)8 tracts in human mismatch repair deficient (MMR-) cells, but single-repeat insertion rates were higher than single-repeat deletion rates in mouse mismatch repair proficient (MMR+) cells. Results of these direct studies on microsatellite mutations in cultured cells should be useful for refinement of mathematical models for microsatellite evolution.  相似文献   

3.
L L Stoike  B B Sears 《Genetics》1998,149(1):347-353
The plastome mutator of Oenothera hookeri strain Johansen causes deletions and duplications at target sites defined by direct repeats in the plastid genome. Previous studies characterized the mutations long after they had occurred and could not discriminate between the possibilities that the plastome mutator acted through unequal homologous recombination or template slippage. From the known hotspots, the rRNA spacer in the large inverted repeat was chosen for this study because it contains both direct and indirect repeats. Identical deletions were recovered from independently derived plants; the altered regions were always flanked by direct repeats. The regions in which the deletions occurred have the potential to form secondary structures that would stabilize the intervening sequence. Of the two affected regions, the one with the stronger potential secondary structure was altered more frequently. Because no duplication products or inversions were recovered, it is proposed that the plastome mutator acts through template slippage rather than through a recombination mechanism.  相似文献   

4.
Microsatellite lengths change over evolutionary time through a process of replication slippage. A recently proposed model of this process holds that the expansionary tendencies of slippage mutation are balanced by point mutations breaking longer microsatellites into smaller units and that this process gives rise to the observed frequency distributions of uninterrupted microsatellite lengths. We refer to this as the slippage/point-mutation theory. Here we derive the theory's predictions for interrupted microsatellites comprising regions of perfect repeats, labeled segments, separated by dinucleotide interruptions containing point mutations. These predictions are tested by reference to the frequency distributions of segments of AC microsatellite in the human genome, and several predictions are shown not to be supported by the data, as follows. The estimated slippage rates are relatively low for the first four repeats, and then rise initially linearly with length, in accordance with previous work. However, contrary to expectation and the experimental evidence, the inferred slippage rates decline in segments above 10 repeats. Point mutation rates are also found to be higher within microsatellites than elsewhere. The theory provides an excellent fit to the frequency distribution of peripheral segment lengths but fails to explain why internal segments are shorter. Furthermore, there are fewer microsatellites with many segments than predicted. The frequencies of interrupted microsatellites decline geometrically with microsatellite size measured in number of segments, so that for each additional segment, the number of microsatellites is 33.6% less. Overall we conclude that the detailed structure of interrupted microsatellites cannot be reconciled with the existing slippage/point-mutation theory of microsatellite evolution, and we suggest that microsatellites are stabilized by processes acting on interior rather than on peripheral segments.  相似文献   

5.
Insertions and deletions of entire codons have recently been discovered as a mechanism by which B cells, in addition to conventional base substitution, evolve the antibodies produced by their immunoglobulin genes. These events frequently seem to involve repetitive sequence motifs in the antibody-encoding genes, and it has been suggested that they occur through polymerase slippage. In order to better understand the process of codon deletion, we have analyzed the human immunoglobulin heavy variable (IGHV) germline gene repertoire for the presence of trinucleotide repeats. Such repeats would ensure that the reading frame is maintained in the case of a deletional event, as slippage over multiples of three bases would be favored. We demonstrate here that IGHV genes specifically carry repetitive trinucleotide motifs in the complementarity-determining regions (CDR) 1 and 2, thus making these parts of the genes that encode highly flexible structures particularly prone to functional deletions. We propose that the human IGHV repertoire carries inherent motifs that allow an antibody response to develop efficiently by targeting codon deletion events to the parts of the molecule that are likely to be able to harbor such modifications. Received: 10 April 2001 / Accepted: 27 August 2001  相似文献   

6.
Small insertions or deletions that alter the reading frame of a gene typically occur in simple repeats such as mononucleotide runs and are thought to reflect spontaneous primer-template misalignment during DNA replication. The resulting extrahelical repeat is efficiently recognized by the mismatch repair machinery, which specifically replaces the newly replicated strand to restore the original sequence. Frameshift mutagenesis is most easily studied using reversion assays, and previous studies in Saccharomyces cerevisiae suggested that the length threshold for polymerase slippage in mononucleotide runs is 4N. Because the probability of slippage is strongly correlated with run length, however, it was not clear whether shorter runs were unable to support slippage or whether the resulting frameshifts were obscured by the presence of longer runs. To address this issue, we removed all mononucleotide runs >3N from the yeast lys2ΔBgl and lys2ΔA746 frameshift reversion assays, which detect net 1-bp deletions and insertions, respectively. Analyses demonstrate that 2N and 3N runs can support primer-template misalignment, but there is striking run-specific variation in the frequency of slippage, in the accumulation of +1 vs. -1 frameshifts and in the apparent efficiency of mismatch repair. We suggest that some of this variation reflects the role of flanking sequence in initiating primer-template misalignment and that some reflects replication-independent frameshifts generated by the nonhomologous end-joining pathway. Finally, we demonstrate that nonhomologous end joining is uniquely required for the de novo creation of tandem duplications from noniterated sequence.  相似文献   

7.
The molecular structure of rare variants at 13 microsatellite loci found in a population of wheat plants grown for one generation in the heavily contaminated 30 km exclusion zone around the Chernobyl Nuclear Power Plant and in a control population was compared. Evidence for rare alterations (variants) was obtained for all 13 loci, including gain and loss of repeats, as well as the complete loss of microsatellite bands. The ratio between gains and losses among variants in the control group was similar to that in the exposed group. Sequencing of variants at six microsatellite loci found in the exposed population revealed extremely complex pattern of germline mutations, including complete deletions of loci, a bias towards mutations with gains and losses of multiple repeat units, and relatively frequent insertions of DNA of unknown origin. The occurrence of large deletions at two loci may be attributed to direct and inverted repeats sequences located just upstream and downstream of the array. The results of our study also suggest that the majority of mutations within the studied wheat microsatellite loci are represented by gains and losses of multiple repeat units, implying that a simple model of replication slippage cannot account for mutation events at these loci. Our data also support the conclusion that the spectra of spontaneous and radiation-induced mutation in wheat may be similar.  相似文献   

8.
Studies on the rate of evolution of proteins typically concentrate on rates of change of orthologous amino acids rather than on changes in size (i.e., generation of nonorthologous domains). Recent work has focused attention on Ser/Thr-rich regions in yeast as these tend to undergo size changes rapidly, with size polymorphisms commonly being found, especially in proteins with cell-surface localization. The underlying mechanism generating the indels is presently unclear though, due to a lack of correlation with the location of meiotic double-strand breaks, it has, by exclusion, been conjectured to be replication slippage. Here we provide new evidence to support this possibility. Notably, we show that Ser/Thr-rich repeat regions are more generally associated with the location of Mre11p in premeiotic cells. This is to be expected if the repeats were produced by mutational events in mitotic cells possibly through replication slippage.  相似文献   

9.
Tandem repeats (TRs) are often present in proteins with crucial functions, responsible for resistance, pathogenicity and associated with infectious or neurodegenerative diseases. This motivates numerous studies of TRs and their evolution, requiring accurate multiple sequence alignment. TRs may be lost or inserted at any position of a TR region by replication slippage or recombination, but current methods assume fixed unit boundaries, and yet are of high complexity. We present a new global graph-based alignment method that does not restrict TR unit indels by unit boundaries. TR indels are modeled separately and penalized using the phylogeny-aware alignment algorithm. This ensures enhanced accuracy of reconstructed alignments, disentangling TRs and measuring indel events and rates in a biologically meaningful way. Our method detects not only duplication events but also all changes in TR regions owing to recombination, strand slippage and other events inserting or deleting TR units. We evaluate our method by simulation incorporating TR evolution, by either sampling TRs from a profile hidden Markov model or by mimicking strand slippage with duplications. The new method is illustrated on a family of type III effectors, a pathogenicity determinant in agriculturally important bacteria Ralstonia solanacearum. We show that TR indel rate variation contributes to the diversification of this protein family.  相似文献   

10.
Microsatellite instability induced by hydrogen peroxide in Escherichia coli   总被引:1,自引:0,他引:1  
Damage to DNA by reactive oxygen species may be a significant source of endogenous mutagenesis in aerobic organisms. Using a selective assay for microsatellite instability in E. coli, we have asked whether endogenous oxidative mutagenesis can contribute to genetic instability. Instability of repetitive sequences, both in intronic sequences and within coding regions, is a hallmark of genetic instability in human cancers. We demonstrate that exposure of E. coli to low levels of hydrogen peroxide increases the frequency of expansions and deletions within dinucleotide repetitive sequences. Sequencing of the repetitive sequences and flanking non-repetitive regions in mutant clones demonstrated the high specificity for alterations with the repeats. All of the 183 mutants sequenced displayed frameshift alterations within the microsatellite repeats, and no base substitutions or frameshift mutations occurred within the flanking non-repetitive sequences. We hypothesize that endogenous oxidative damage to DNA can increase the frequency of strand slippage intermediates occurring during DNA replication or repair synthesis, and contribute to genomic instability.  相似文献   

11.
A Phylogenetic Perspective on Sequence Evolution in Microsatellite Loci   总被引:9,自引:0,他引:9  
We examined the evolution of the repeat regions of three noncoding microsatellite loci in 58 species of the Polistinae, a subfamily of wasps that diverged over 140 million years ago. A phylogenetic approach allows two new kinds of approaches to studying microsatellite evolution: character mapping and comparative analysis. The basic repeat structure of the loci was highly conserved, but was often punctuated with imperfections that appear to be phylogenetically informative. Repeat numbers evolved more rapidly than other changes in the repeat region. Changes in number of repeats among species seem consistent with the stepwise mutation model, which is based on slippage during replication as the main source of mutations. Changes in repeat numbers can occur even when there are very few tandem repeats but longer repeats, especially perfect repeats led to greater rates of evolutionary change. Species phylogenetically closer to the one from which we identified the loci had longer stretches of uninterrupted repeats and more different motifs, but not longer total repeat regions. The number of perfect repeats increased more often than it decreased. However, there was no evidence that some species have consistently greater numbers of repeats across loci than other species have, once ascertainment bias is eliminated. We also found no evidence for a population size effect posited by one form of the directionality hypothesis. Overall, phylogenetic variation in repeat regions can be explained by adding neutral evolution to what is already known about the mutation process. The life cycle of microsatellites appears to reflect a balance between growth by slippage and degradation by an essentially irreversible accumulation of imperfections. Received: 13 April 1999 / Accepted: 8 September 1999  相似文献   

12.
Here, we develop a new approach to Markov chain modeling of microsatellite evolution through polymerase slippage and introduce new models: a "constant-slippage-rate" model, in which there is no dependence of slippage rate on microsatellite length, as envisaged by Moran; and a "linear-with-constant" model, in which slippage rate increases linearly with microsatellite length, but the line of best fit is not constrained to go through the origin. We show how these and a linear no-constant model can be fitted to data hierarchically using maximum likelihood. This has advantages over previous methods in allowing statistical comparisons between models. When applied to a previously analyzed data set, the method allowed us to statistically establish that slippage rate increases with microsatellite length for dinucleotide microsatellites in humans, mice, and fruit flies, and suggested that no slippage occurs in very short microsatellites of one to four repeats. The suggestion that slippage rates are zero or close to zero for very short microsatellites of one to four repeats has important implications for understanding the mechanism of polymerase slippage.  相似文献   

13.
Haemophilus influenzae is an obligate commensal of the upper respiratory tract of humans that uses simple repeats (microsatellites) to alter gene expression. The mod gene of H. influenzae strain Rd has homology to DNA methyltransferases of type III restriction/modification systems and has 40 tetranucleotide (5'-AGTC) repeats within its open reading frame. This gene was found in 21 out of 23 genetically distinct H. influenzae strains, and in 13 of these strains the locus contained repeats. H. influenzae strains were constructed in which a lacZ reporter was fused to a chromosomal copy of mod downstream of the repeats. Phase variation occurred at a high frequency in strains with the wild-type number of repeats. Mutation rates were derived for similarly engineered strains, containing different numbers of repeats. Rates increased linearly with tract length over the range 17-38 repeat units. The majority of tract alterations were insertions or deletions of one repeat unit with a 2:1 bias towards contractions of the tract. These results demonstrate the number of repeats to be an important determinant of phase variation rate in H. influenzae for a gene containing a microsatellite.  相似文献   

14.
Replication strand preference for deletions associated with DNA palindromes   总被引:7,自引:2,他引:5  
We have isolated and sequenced a set of deletions stimulated by DNA palindromes in Escherichia coli . All of the deletions are asymmetric with respect to the parental sequence and have occurred at short direct repeats. This is consistent with deletion by strand slippage during DNA replication. The orientation of the asymmetry in such deletion products is diagnostic of the direction of the strand slippage event. It is therefore also diagnostic of its occurrence on the leading or lagging strand of the replication fork when the direction of replication is known. In all cases in which the orientation of the asymmetry could be determined with respect to DNA replication, the products were consistent with a preference for deletion on the lagging strand of the fork. The data include replication slippage in three situations: on the chromosome of E . coli , in bacteriophage λ and in high-copy-number pUC-based plasmids.  相似文献   

15.
We fit a Markov chain model of microsatellite evolution introduced by Kruglyak et al. to data on all di-, tri-, and tetranucleotide repeats in the yeast genome. Our results suggest that many features of the distribution of abundance and length of microsatellites can be explained by this simple model, which incorporates a competition between slippage events and base pair substitutions, with no need to invoke selection or constraints on the lengths. Our results provide some new information on slippage rates for individual repeat motifs, which suggest that AT-rich trinucleotide repeats have higher slippage rates. As our model predicts, we found that many repeats were adjacent to shorter repeats of the same motif. However, we also found a significant tendency of microsatellites of different motifs to cluster.  相似文献   

16.
We showed previously that mutations in methyl-directed mismatch repair of Escherichia coli reduced the occurrence of large deletions in (CTG.CAG)(175) repeats contained on plasmids. By contrast, other workers reported that mutations in mismatch repair increase the frequency of small-length changes in the shorter (CTG.CAG)(64). Using plasmids with a variety of lengths and purity of (CTG.CAG) repeats, we have resolved these apparently conflicting observations. We show that all lengths of (CTG.CAG) repeats are subject to small-length changes (eight repeats) in (CTG.CAG)(n) occur more readily in cells with active mismatch repair. The frequency of large deletions is proportional to the tract length; in our assays they become prominent in tracts greater than 100 repeats. Interruptions in repeat purity enhance the occurrence of large deletions. In addition, we observed a high level of incidence of deletions in (CTG.CAG) repeats for cultures passing repeatedly through stationary phase during long-term growth experiments of all strains (i.e. with active or inactive mismatch repair). These results agree with current theories on mismatch repair acting on DNA slippage events that occur in DNA triplet-repeats.  相似文献   

17.
Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.  相似文献   

18.
Y Ogihara  T Ohsawa 《Génome》2002,45(5):956-962
Precise location and nature of each of 14 length mutations detected among chloroplast DNAs of Triticum-Aegilops species by RFLP analysis were determined at the nucleotide sequence level. Each mutation was compared with at least three non-mutated wild-type plastomes as standards. These 14 length mutations were classified into 4 duplications and 10 deletions. One duplication occurred in the small single-copy region close to the border of the inverted repeat, and the remaining 13 length mutations took place in the large single-copy region. All length mutations occurred in the intergenic regions, suggesting that these length mutations do not affect plastid gene expression. Saltatory replication was the cause of all duplications, whereas intramolecular recombination mediated by short direct repeats played a substantial role in the deletions. Recurrent occurrences of certain deletion events were found in some AT-rich regions, which constituted hot spots for deletion. Out of four hypervariable regions detected among the grass plastomes, two (downstream of rbcL and a tRNA gene accumulated region) were still active after differentiation of Triticum and Aegilops complex.  相似文献   

19.
J. G. de-Boer  L. S. Ripley 《Genetics》1988,118(2):181-191
The fidelity of in vitro DNA synthesis catalyzed by the large fragment of DNA polymerase I was examined. The templates, specifically designed to detect shifts to the +1 or to the -1 reading frame, are composites of M13mp8 and bacteriophage T4 rIIB DNA and were designed to assist in the identification of the types of frameshifts that are the specific consequence of DNA polymerization errors. In vitro polymerization by the Klenow fragment produced only deletions, rather than the mixture of duplications and deletions characteristic of in vivo frameshifts. The most frequent frameshifts were deletions of 1 bp opposite a template purine base. Hotspots for these deletions occurred when the template purine immediately preceded the template sequence TT. The highest mutation frequencies were seen when the TTPu consensus sequence was adjacent to G:C rich sequences in the 3' direction. The nature of the consensus sequence itself distinguishes this 1-bp deletion mechanism from those operating in DNA repeats and attributed to the misalignment of DNA primers during synthesis. Deletions that were larger than 1 or 2 bp isolated after in vitro replication were consistent with the misalignment of the primer. Deletions of 2 bp and complex frameshifts (the replacement of AA by C) were also found. Mechanisms that may account for these mutations are discussed.  相似文献   

20.
The spacer between the 16S and 23S rRNA genes of the chloroplast DNA has been implicated as an origin of replication in several species of plants. In the evening primrose, Oenothera, this site was found to vary greatly in size, with plastid genomes (plastomes) being readily distinguished. To determine whether plastome "strength" in transmission could be correlated with variation at oriB, the 16S rRNA-trnI spacer was sequenced from five plastomes. The size variation was found to be due to differential amplification (and deletion) of combinations of sequences belonging to seven families of direct repeats. From these comparisons, one short series of direct repeats and one region capable of forming a hairpin structure were identified as candidates for the factor that could be responsible for the differences between strong and weak plastome types. Ample sequence variation allowed phylogenetic inferences to be made about the relationships among the plastomes. Phylogenetic trees also could be constructed for most of the families of direct repeats. The amplifications and deletions of repeats that account for the size variation at oriB are proposed to have occurred through extensive replication slippage at this site.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号