首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reperfusion after a brief period of cardiac ischemia can lead to potentially lethal arrhythmias. Importantly, there are sex-related differences in cardiac physiology and in the types and severity of cardiac arrhythmias. Therefore, we tested the hypothesis that gonadal hormones influence the susceptibility to reperfusion-induced sustained ventricular tachycardia (VT), as well as the response to beta-adrenergic receptor blockade. Male and female intact and gonadectomized rats were instrumented, and arterial pressure, temperature, ECG, and cardiac output were recorded. In addition, a snare was placed around the left main coronary artery. Tension was applied to the snare for determination of susceptibility to sustained VT produced by 3 min of occlusion and reperfusion of the left main coronary artery in conscious rats. Reperfusion culminated in sustained VT in 77% (10 of 13 susceptible) of female rats and 56% (9 of 16 susceptible) of male rats (P > 0.05, male vs. female). beta-Adrenergic receptor blockade prevented sustained VT in females only [1 of 9 susceptible females (11%) vs. 6 of 9 susceptible males (67%), P < 0.05]. Ovariectomy did not significantly reduce the susceptibility to reperfusion arrhythmias [5 of 9 susceptible (56%)]. In sharp contrast, orchidectomy significantly increased the susceptibility to reperfusion arrhythmias [9 of 9 susceptible (100%)]. Finally, beta-adrenergic receptor blockade prevented sustained VT in ovariectomized females [0 of 4 susceptible (0%)] and orchidectomized males [0 of 7 susceptible (0%)], but the protective effect of beta-blockade was due to a reduction in heart rate in males only. Thus gonadal hormones influence the susceptibility to reperfusion-induced arrhythmias, as well as the effects and mechanisms of beta-adrenergic receptor blockade.  相似文献   

2.
We recently documented that paraplegia (T(5) spinal cord transection) alters cardiac electrophysiology and increases the susceptibility to ventricular tachyarrhythmias induced by programmed electrical stimulation. However, coronary artery occlusion is the leading cause of death in industrially developed countries and will be the major cause of death in the world by the year 2020. The majority of these deaths result from tachyarrhythmias that culminate in ventricular fibrillation. beta-Adrenergic receptor antagonists have been shown to reduce the incidence of sudden cardiac death. Therefore, we tested the hypothesis that chronic T(5) spinal cord transection increases the susceptibility to clinically relevant ischemia-reperfusion-induced sustained ventricular tachycardia due to enhanced sympathetic activity. Intact and chronic (4 wk after transection) T(5) spinal cord-transected (T(5)X) male rats were instrumented to record arterial pressure, body temperature, and ECG. In addition, a snare was placed around the left main coronary artery. The susceptibility to sustained ventricular tachycardia produced by 2.5 min of occlusion and reperfusion of the left main coronary artery was determined in conscious rats by pulling on the snare. Reperfusion culminated in sustained ventricular tachycardia in 100% of T(5)X rats (susceptible T(5)X, 10 of 10) and 0% of intact rats [susceptible intact, 0 of 10 (P < 0.05, T(5)X vs. intact)]. Beta-adrenergic receptor blockade prevented reperfusion-induced sustained ventricular tachycardia in T(5)X rats [susceptible T(5)X 0 of 8, 0% (P < 0.05)]. Thus paraplegia increases the susceptibility to reperfusion-induced sustained ventricular tachycardia due to enhanced sympathetic activity.  相似文献   

3.
The response to myocardial ischemia is complex and involves the cardio-cardiac sympathetic reflex. Specifically, cardiac spinal (sympathetic) afferents are excited by ischemic metabolites and elicit an excitatory sympathetic reflex, which plays a major role in the genesis of ventricular arrhythmias. For example, brief myocardial ischemia leads to ATP release, which activates cardiac spinal afferents through stimulation of P2 receptors. Clinical work with patients and preclinical work with animals document that disruption of this reflex protects against ischemia-induced ventricular arrhythmias. However, the role of afferent signals in the initiation of sustained ventricular tachycardia has not been investigated. Therefore, we tested the hypothesis that cardiac spinal deafferentation reduces the susceptibility to sustained ventricular tachycardia in adult (12-15 wk of age), conscious, male Sprague-Dawley rats. To test this hypothesis, the susceptibility to ventricular tachyarrhythmias produced by occlusion of the left main coronary artery was determined in two groups of conscious rats: 1) deafferentation (bilateral excision of the T1-T5 dorsal root ganglia) and 2) control (sham deafferentation). The ventricular arrhythmia threshold (VAT) was defined as the time from coronary occlusion to sustained ventricular tachycardia resulting in a reduction in arterial pressure. Results document a significantly higher VAT in the deafferentation group (7.0 ± 0.7 min) relative to control (4.3 ± 0.3 min) rats. The decreased susceptibility to tachyarrhythmias with deafferentation was associated with a reduced cardiac metabolic demand (lower rate-pressure product and ST segment elevation) during ischemia.  相似文献   

4.
Epidemiological data document that regular exercise protects against the morbidity and mortality associated with ischemic heart disease. Therefore, we tested the hypothesis that daily exercise (DE) increases the ventricular arrhythmia threshold (VAT) induced by coronary artery occlusion and alters the expression of calcium regulatory proteins. The VAT was defined as the time from coronary occlusion to sustained ventricular tachycardia resulting in a reduction in arterial pressure. To test this hypothesis, we recorded the VAT in conscious sedentary normotensive, sedentary hypertensive, and DE hypertensive rats, and we associated these thresholds with the protein expression of the L-type calcium channel, Na+/Ca2+ exchanger, phospholamban, and sarco(endo)plasmic reticulum Ca(2+)-ATPase. Results document a significantly reduced time to ventricular arrhythmias (sedentary hypertensive, 3.7 +/- 0.3 min vs. sedentary normotensive, 4.8 +/- 0.3 min), an increased Na+/Ca2+ exchanger protein expression (47%), and a decreased phospholamban protein expression (-34%) in conscious hypertensive rats. DE increased the VAT (5.9 +/- 0.2 min), decreased the protein expression of the Na+/Ca2+ exchanger, and normalized the protein expression of phospholamban in the hypertensive rats. Thus DE may be a primary prevention approach for reducing the incidence of arrhythmias by altering calcium regulatory proteins in hypertensive rats.  相似文献   

5.
Coronary artery occlusion-induced tachyarrhythmias that culminate in ventricular fibrillation are the leading cause of death in developed countries. The intrinsic adenosine receptor system protects the heart from an ischemic insult. Thus the increased functional demands made on the heart during exercise may produce protective adaptations mediated by endogenous adenosine. Therefore, we tested the hypothesis that a single bout of dynamic exercise increases the ventricular arrhythmia threshold (VAT) induced by coronary artery occlusion in conscious hypertensive rats via the intrinsic adenosine receptor system. To test this hypothesis, we recorded the VAT before and on an alternate day after a single bout of dynamic treadmill exercise (12 m/min, 10% grade for 40 min). A single bout of dynamic exercise significantly reduced postexercise arterial pressure (Delta-24 +/- 4 mmHg) and increased VAT (Delta+1.95 +/- 0.31 min). Adenosine receptor blockade with the nonselective adenosine receptor antagonists theophylline or aminophylline (10 mg/kg) attenuated the cardioprotective effects of a single bout of dynamic exercise. Results suggest that strategies that increase myocardial ATP requirements leading to adenosine production provide protection against coronary artery occlusion.  相似文献   

6.
Menopausal status is a risk factor for coronary artery disease death, but the mechanism underlying this association is uncertain. To test whether estrogen ameliorates the effects of acute myocardial ischemia in ways likely to translate into a mortality difference, we compared the response to brief (6-min) and prolonged (45-min) coronary occlusion in vivo in five groups (each n = 16) of rats: ovariectomized females; ovariectomized females after 6 wk 17beta-estradiol replacement; male rats supplemented with estradiol for 6 wk; normal males; and normal females. Coronary occlusion produced a uniform ischemic risk area averaging 53 +/- 3% of left ventricular volume. After a brief occlusion, reperfusion ventricular tachycardia/fibrillation occurred with >85% frequency in all groups. During a prolonged occlusion, ischemic ventricular tachycardia occurred in 100% and sustained tachycardia requiring cardioversion in >75% of rats in all groups. Myocardial infarct size averaged 52 +/- 4% of the ischemic risk area and was similarly unaffected by gender or estrogen status. We conclude that neither short-term estrogen withdrawal, replacement, nor supplementation significantly affects the potentially lethal outcomes from acute coronary occlusion in this species.  相似文献   

7.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

8.
A possible role of the autonomic nervous system in the left ventricular response to acute regional myocardial ischemia was sought in conscious dogs instrumented for measurement of left ventricular pressure, internal diameter, and aortic flow. Ischemia produced by occluding the left circumflex coronary artery caused tachycardia and reduced contractility. Changes during control occlusions were compared with those during occlusion.s after beta-adrenergic blockade, parasympathetic blockade, and combined sympathetic and parasymphatetic blockade. Beta-blockade did reduce the tachycardia and slightly reduced left ventricular diameter changes in response to coronary occlusion. Results obtained in animals following surgical cardiac sympathectomy indicated reduced tachycardia and no effects on other parameters. The principal effect of parasympathetic blockade was to augment the increase in end diastolic diameter during occlusion Right atrial pacing indicated this change was due to higher initial heart rates. Combined parasympathetic and sympathetic blockade did not alter inotropic responses to coronary occlusion. Results indicated that inotropic support due to changes in activity in autonomic nerves is not increased during acute occlusion of the left circumflex coronary artery.  相似文献   

9.
In a previous clinical study we have demonstrated a significantly lower baroreflex-mediated bradycardic response in young women compared with men. The present study determined whether sexual dimorphism in baroreflex sensitivity in young rats also covers the reflex tachycardic response. The study was then extended to test the hypothesis that an attenuated cardiac cholinergic component of the baroreflex heart rate response in females may account for the gender difference. Baroreflex sensitivity (BRS) was expressed as the regression coefficient of the reciprocal relationship between evoked changes in blood pressure and heart rate. BRS measured in conscious rats with phenylephrine (BRS(PE)) and nitroprusside (BRS(NP)) represented the reflex bradycardic and tachycardic responses, respectively. Female rats exhibited significantly lower BRS(PE) compared with male rats (-1.53+/-0.1 vs. -2.36+/-0.13 beats x min(-1) x mmHg(-1); p < 0.05) but similar BRS(NP) (-2.60+/-0.20 vs. -2.29+/-0.17 beats x min(-1) x mmHg(-1)). Blockade of cardiac muscarinic receptors with atropine methyl bromide elicited greater attenuation of BRS(PE) in male than in female rats (72+/-4.6 vs. 53+/-6.7% inhibition; p < 0.01) and abolished the gender difference. In male rats cardiac muscarinic blockade attenuated BRS(PE) significantly more than did cardiac beta-adrenergic receptor blockade with propranolol (72+/-4.6 vs. 43+/-2.7; p < 0.01), which suggests greater dependence of BRS(PE) on the parasympathetic component. In females, muscarinic and beta-adrenergic blockade elicited similar attenuation of BRS(PE). The findings suggest that (i) BRS is differentially influenced by gender; female rats exhibit substantially lower BRS(PE) but similar BRS(NP) compared with age-matched male rats and (ii) the sexual dimorphism in BRS(PE) results, at least partly, from a smaller increase in vagal outflow to the heart in response to baroreceptor activation.  相似文献   

10.
The present study is designed to investigate the role of sex and gonadal status in the growth hormone (GH) and corticosterone response to hexarelin (HEXA), a GH-releasing peptide, which also causes a stimulatory action on the hypothalamic-pituitary-adrenal (HPA) axis. HEXA (80 microg/Kg) was administered intracarotid to anesthetized intact or gonadectomized male (ORC) and female (OVX) middle-aged rats. The GH stimulatory response to HEXA was gender-related since the GH increase was significantly (p < 0.001) higher in intact males (area under the curve, AUC= 12560 +/- 1784 ng/ml.45 min) than in females (AUC= 4628 +/- 257 ng/ml.45 min). This sex difference does not depend on circulating gonadal steroids since it persists in ORC (AUC = 11980 +/- 1136 ng/ml.45 min) and OVX (AUC = 5539 +/- 614 ng/ml.45 min) rats. The different effects of HEXA on corticosterone secretion detected in male and female rats are probably dependent on the prevailing activity of the HPA axis. In fact, in male rats that have low basal corticosterone levels, HEXA caused an increase in corticosterone secretion, which was significantly (p< 0.05) higher in ORC than in intact rats. The increase in corticosterone secretion by HEXA both in intact and OVX females was delayed, probably due to the elevated initial corticosterone levels, which could have activated the glucocorticoid negative feedback. We suggest that gender-specific patterns in the regulation of the hypothalamus-pituitary function could be responsible for the GH and corticosterone sexually differentiated responses to HEXA.  相似文献   

11.
戴文捷  陆利民 《生理学报》1996,48(6):557-563
实验用10-11周龄经阉割的雌、雄Sprague-Dawley大鼠进行。以3末端异羟基洋地黄毒甙标记的26个碱基长的寡核苷酸作为检测探针,用核酸斑点杂交技术检测大鼠下丘脑血管升压素mRNA水平。在假手术对照组,雄性大鼠下丘脑AVPmRNA水平经雌性大鼠高45%(P〈0.05),血浆渗透压高于雌性大鼠(P〈0.05)。摘除卵巢的大鼠下丘脑AVPmRNA深恶痛绝经假手术组雌性大鼠高30%(P〈0.05  相似文献   

12.
Rats show gender differences in responses to morphine and the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801); the role of sex steroids in mediating these differences is unclear. We tested the overall hypothesis that circulating gonadal steroids determine the gender differences in morphine- and MK-801-induced behavior and c-Fos expression. Morphine caused a greater expression of c-Fos in the striatum of intact males than of that females, which was independent of sex steroids. MK-801 completely inhibited morphine-induced c-Fos in intact females but only caused partial inhibition in intact males; castrated males showed complete inhibition, which was reversed by testosterone, but gonadal steroids had no effect on this response in females. In thalamus, there was a large sex difference in the response to MK-801 that was independent of gonadal steroids. Behavioral responses to morphine were greater in males, but responses to MK-801 were greater in females; both were sex steroid independent. These findings show significant sex differences in response to morphine and MK-801 that are mediated by sex steroid-dependent and -independent mechanisms, which may be important in treatment outcomes of drug addiction.  相似文献   

13.
Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male‐specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17‐α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male‐specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex‐specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex‐specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex‐specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.  相似文献   

14.
To define the physiological signals involved in the redirection of myosin expression in the swim-exercised rat, the relative influence of thyroid hormones and beta-adrenergic blockade was determined. Swimming exercise resulted in an increased proportion of myosin V1 (60.9 +/- 9.7 vs. 38.0 +/- 4.1% of sedentary rats fed ad libitum) but did not increase serum concentrations of total and free thyroxine or triiodothyronine determined either 17-21 h or immediately after swimming. The proportion of V1 increased, although intermittently food-deprived rats with the body weight of swimming rats exhibited a reduced proportion of V1 (23.5 +/- 2.7). When swimming rats had only intermittent access to food, they had reduced concentrations of all thyroid hormones, but the proportion of V1 (51.5 +/- 7.6) was nonetheless increased. Thus the redirection of myosin expression cannot be attributed to an increased secretion of thyroid hormones. The influence of the adrenergic system was assessed by treating swimming rats with the beta-blocking drug atenolol. Because the proportion of V1 was reduced, but thyroid hormones were not affected, beta-adrenergic blockade seems to influence myosin expression independently of thyroid hormones.  相似文献   

15.
Adult males and females of the seasonally breeding lizardCalotes versicolor were subjected to various social situations under semi-natural conditions to explain the role of socio-sexual factors in gonadal recrudescence. They were grouped as: (i) males and females, (ii) males and females separated by a wire mesh, (iii) same sex groups of males or females, (iv) castrated males with intact females and (v) ovariectomized (OvX) females with intact males from postbreeding to breeding phase. Specimens collected from the wild during breeding season served as the control group. Plasma sex steroid levels (testosterone in male and 17β-estradiol in female), spermatogenetic activity and vitellogenesis were the criteria to judge gonadal recrudescence. In intact males and females that were kept together, gonadal recrudescence and plasma sex steroids levels were comparable to those in wild-caught individuals. Gonadal recrudescence was at its least in all male and all female groups, and plasma sex steroids were at basal levels. Association with OvX females initiated testicular recrudescence but spermatogenetic activity progressed only up to the spermatid stage while males separated from females by wire mesh showed spermatogenetic activity for a shorter period. Females grouped with castrated males and those separated from males by wire mesh produced vitellogenic follicles. However, the total number and diameter of vitellogenic follicles, and plasma estradiol levels were lower than in the females grouped with intact males. The findings indicate that association with members of the opposite sex with progressively rising titers of sex steroids is crucial in both initiating and sustaining gonadal recrudescence in the lizard. Thus, members of the opposite sex mutually regulate gonadal recrudescence in theC. versicolor.  相似文献   

16.
Shear stress-dependent nitric oxide (NO) formation prevents immoderate vascular constriction. We examined whether shear stress-dependent NO formation limits exercise-induced coronary artery constriction after beta-adrenergic receptor blockade in dogs. Control exercise led to increases (P < 0.01) in coronary blood flow (CBF) by 38 +/- 5 ml/min from 41 +/- 5 ml/min and in the external diameter of epicardial coronary arteries (CD) by 0.24 +/- 0.03 mm from 3.33 +/- 0.20 mm. CD and shear stress were linearly related. After propranolol, CD fell (P < 0.01) during exercise (0.08 +/- 0.03 from 3.23 +/- 0.19 mm), and the slope of the relationship between CD and shear stress was reduced (P < 0.01). This slope was not further altered by the additional blockade of NO formation. In propranolol-treated resting dogs, flow-dependent effects of intracoronary adenosine to mimic exercise-induced increases in shear stress (after propranolol) led to increases (P < 0.01) in CD (0.09 +/- 0.02 from 3.68 +/- 0.27 mm). Thus both shear stress-dependent NO formation and beta-adrenergic receptor activation are required to cause CD dilation during exercise. Suppression of beta-adrenergic receptor activation leads to impaired shear stress-dependent NO formation and allows alpha-adrenergic constriction to become dominant.  相似文献   

17.
The objective of this study was to test the hypothesis that the mechanism mediating left ventricular (LV) dysfunction in the aging rat heart involves, in part, changes in cardiac cytoskeletal components. Our results show that there were no significant differences in heart rate, LV pressure, or LV diameter between conscious, instrumented young [5.9 +/- 0.3 mo (n = 9)] and old rats [30.6 +/- 0.1 mo (n = 10)]. However, the first derivative of LV pressure (LV dP/dt) was reduced (8,309 +/- 790 vs. 11,106 +/- 555 mmHg/s, P < 0.05) and isovolumic relaxation time (tau) was increased (8.7 +/- 0.7 vs. 6.3 +/- 0.6 ms, P < 0.05) in old vs. young rats, respectively. The differences in baseline LV function in young and old rats, which were modest, were accentuated after beta-adrenergic receptor stimulation with dobutamine (20 mug/kg), which increased LV dP/dt by 170 +/- 9% in young rats, significantly more (P < 0.05) than observed in old rats (115 +/- 5%). Volume loading in anesthetized rats demonstrated significantly impaired LV compliance in old rats, as measured by the LV end-diastolic pressure and dimension relationship. In old rat hearts, there was a significant (P < 0.05) increase in the percentage of LV collagen (2.4 +/- 0.2 vs. 1.3 +/- 0.2%), alpha-tubulin (92%), and beta-tubulin (2.3-fold), whereas intact desmin decreased by 51%. Thus the cardiomyopathy of aging in old, conscious rats may be due not only to increases in collagen but also to alterations in cytoskeletal proteins.  相似文献   

18.
In young adult spontaneously hypertensive rats (SHR), mean arterial pressure (MAP) is higher in males than in females and inhibition of the renin-angiotensin system (RAS) eliminates this sex difference. After cessation of estrous cycling in female SHR, MAP is similar to that in male SHR. The purpose of this study was to determine the role of the RAS in maintenance of hypertension in aging male and female SHR. At 16 mo of age, MAP was similar in male and female SHR (183+/-5 vs. 193+/-8 mmHg), and chronic losartan (40 mg.kg-1.day-1 po for 3 wk) reduced MAP by 52% (to 90+/-8 mmHg, P<0.05 vs. control) in males and 37% (to 123+/-11 mmHg, P<0.05 vs. control) in females (P<0.05, females vs. males). The effect of losartan on angiotensin type 1 (AT1) receptor blockade was similar: MAP responses to acute doses of ANG II (62.5-250 ng/kg) were blocked to a similar extent in losartan-treated males and females. F2-isoprostane excretion was reduced with losartan more in males than in females. There were no sex differences in plasma renin activity, plasma angiotensinogen or ANG II, or renal expression of AT1 receptors, angiotensin-converting enzyme, or renin. However, renal angiotensinogen mRNA and protein expression was higher in old males than females, whereas renal ANG II was higher in old females than males. The data show that, in aging SHR, when blood pressures are similar, there remains a sexual dimorphism in the response to AT1 receptor antagonism, and the differences may involve sex differences in mechanisms responsible for oxidative stress with aging.  相似文献   

19.
《Hormones and behavior》2012,61(5):625-631
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a ‘novel object recognition’ task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.  相似文献   

20.
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a ‘novel object recognition’ task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号