首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.  相似文献   

2.
Abstract Immunoblotting profiles of whole or protease-K-digested organisms with homologous antisera demonstrated the presence of a characteristic ladder pattern of smooth LPS in Treponema phagedenis . Periodic acid silver staining of SDS-PAGE gels confirmed these findings. However, when heterologous or homologous serum was reacted with Treponema pallidum , no such pattern or cross-reactions were observed. The significance of apparent absence of LPS in T. pallidum is discussed.  相似文献   

3.
Characterization of monoclonal antibodies to Treponema pallidum   总被引:19,自引:0,他引:19  
Thirteen hybrid cell lines which produce mouse monoclonal antibodies to Treponema pallidum, the causative agent of syphilis, have been established. All of the monoclonal antibodies react with T. pallidum, Nichols strain, in ELISA and in immunofluorescence assays, but do not react with normal rabbit testicular tissue in the ELISA. Two of these antibodies were demonstrated to react with the nonpathogenic treponemes T. phagedenis, biotype Reiter, T. refringens (Noguchi strain), T. vincentii, and T. denticola (strains 11 and W), as well as with Borrelia recurrentis, Leptospira interrogans, serogroup Canicola, and the swine pathogen T. hyodysenteriae. The remaining 11 antibodies react with four recently isolated strains of T. pallidum, but with none of the related nonpathogens nor with Borrelia or Leptospira. Thus, our results to date indicate that these monoclonal antibodies may identify antigenic determinants that are specific either for T. pallidum alone or for those treponemes which are pathogenic for humans. The molecular specificities of six of the 13 antibodies were determined by Western blotting. We anticipate potential usefulness of these antibodies in the investigation of the antigenic structure of T. pallidum, the taxonomic study of the pathogenic and nonpathogenic treponemes, and in the diagnosis of syphilis.  相似文献   

4.
5.
Treponemicidal activity against Treponema pallidum, Nichols strain, by anti-endoflagellar antibodies and the presence of antigenic interrelationships between the endoflagella of Treponema phagedenis biotype Reiter (TPR) and T. pallidum have been demonstrated. SDS-PAGE profiles of purified endoflagella from both organisms were similar, identifying five polypeptide bands for TPR (37,000, 33,000 doublet, 30,000, and 27,000 daltons) and five polypeptide bands for T. pallidum (35,000, 33,000 doublet, 30,000, and 27,000 daltons). Antiserum against TPR endoflagella identified identical bands on Western blots of TPR, T. pallidum, and the respective endoflagellar preparations. Western blots confirmed the presence of antibodies in normal human serum (NHS) against the 33,000 dalton treponemal endoflagellar proteins. The complement-dependent treponemicidal activity of NHS against T. pallidum was completely removed by absorption with purified TPR endoflagella. Furthermore, rabbit antisera against TPR endoflagella were reactive in the Treponema pallidum immobilization (TPI) test. These findings demonstrate that anti-endoflagellar antibodies are treponemicidal against T. pallidum. A possible mechanism for this activity is discussed in relation to the subsurface location of endoflagella.  相似文献   

6.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

7.
A 38-kDa lipoprotein of Treponema pallidum (Tp38) was predicted to be a periplasmic sugar-binding protein based on its sequence similarity to the glucose/galactose-binding (MglB) protein of Escherichia coli (P. S. Becker, D. R. Akins, J. D. Radolf, and M. V. Norgard, Infect. Immun. 62:1381-1391, 1994). Inasmuch as glucose is believed to be the principal, if not sole, carbon and energy source for T. pallidum and is readily available to the spirochete during its obligate infection of humans, we hypothesized that Tp38 may serve as the organism's requisite glucose receptor. For the present study, a nonacylated recombinant form of Tp38 was coexpressed with GroES and GroEL in E. coli to facilitate the isolation of soluble, properly folded Tp38. The highly sensitive method of intrinsic fluorescence spectroscopy, predicated on the manner in which tryptophan residues reside and move within protein microenvironments, was then used to assess sugar binding to Tp38. The intrinsic fluorescence of Tp38 was essentially unaltered when it was exposed to D-mannose, D-fucose, D-ribose, L-glucose, or L-galactose, but it changed markedly in the presence of D-glucose, and to a lesser extent, D-galactose, indicating binding. The K(d) values for D-glucose and D-galactose binding to Tp38 were 152.2 +/- 20.73 nM and 251.2 +/- 55.25 nM, respectively. Site-directed mutagenesis of Trp-145, a residue postulated to contribute to the sugar-binding pocket in a manner akin to the essential Trp-183 in E. coli MglB, abolished Tp38's conformational change in response to D-glucose. The combined data are consistent with Tp38 serving as a glucose receptor for T. pallidum. These findings potentially have important implications for syphilis pathogenesis, particularly as they may pertain to glucose-mediated chemotactic responses by T. pallidum.  相似文献   

8.
Human syphilis is a multistage disease, with diverse and wide-ranging manifestations caused by Treponema pallidum. Despite the fact that a cell-mediated immune response takes part in the course of syphilis, T. pallidum often manages to evade host immunity and, in untreated individuals, may trigger chronic infection. With this study, we demonstrate for the first time, to our knowledge, that Treponema pallidum induces a regulatory T (Treg) response in patients with secondary syphilis and we found that the miniferritin TpF1, produced by the bacterium, is able to expand this response and promote the production of TGF-β. Accordingly, TpF1 stimulates monocytes to release IL-10 and TGF-β, the key cytokines in driving Treg cell differentiation. Interestingly, we also found that TpF1 stimulates monocytes to synthesize and release several proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, the latter following the activation of the multiprotein complex inflammasome. Collectively, these data strongly support a central role for TpF1 both in the inflammation process, which occurs in particular during the early stage of syphilis, and in the long-term persistence of the spirochete within the host by promoting Treg response and TGF-β production.  相似文献   

9.
Three genetically distinct groups of treponemes have been identified by saturation reassociation assays using 125I-labeled treponemal DNAs. The three groups are (i) virulent Treponema pallidum (Nichols strain), (ii) T. phagedenis and its biotypes Reiter and Kazan 5, and (iii) T. refringens biotypes Nichols and Noguchi. There is no detectable DNA sequence homology (less than 5%) among the three groups. The groups have distinct guanine + cytosine contents: 52.4 to 53.7% for T. pallidum, 41.5% for T. refringens, and 38 to 39% for T. phagedenis.  相似文献   

10.
梅毒螺旋体(Treponema pallidum,Tp)是慢性全身性性传播疾病梅毒的病原体。由于Tp不能持续体外培养,阻碍了对Tp结构及其致病机制的深入研究。目前,Tp(Nicholes株)基因组测序的完成以及分子生物学技术的发展,为Tp的研究提供了机遇。就Tp的遗传物质和致病机制的研究进展进行综述。  相似文献   

11.
Treponema pallidum is a highly invasive pathogen that undergoes rapid dissemination to establish widespread infection. Previous investigations identified the T. pallidum adhesin, pallilysin, as an HEXXH-containing metalloprotease that undergoes autocatalytic cleavage and degrades laminin and fibrinogen. In the current study we characterized pallilysin''s active site, activation requirements, cellular location, and fibrin clot degradation capacity through both in vitro assays and heterologous treponemal expression and degradation studies. Site-directed mutagenesis showed the pallilysin HEXXH motif comprises at least part of the active site, as introduction of three independent mutations (AEXXH [H198A], HAXXH [E199A], and HEXXA [H202A]) abolished pallilysin-mediated fibrinogenolysis but did not adversely affect host component binding. Attainment of full pallilysin proteolytic activity was dependent upon autocatalytic cleavage of an N-terminal pro-domain, a process which could not occur in the HEXXH mutants. Pallilysin was shown to possess a thrombin cleavage site within its N-terminal pro-domain, and in vitro studies confirmed cleavage of pallilysin with thrombin generates a truncated pallilysin fragment that has enhanced proteolytic activity, suggesting pallilysin can also exploit the host coagulation process to facilitate protease activation. Opsonophagocytosis assays performed with viable T. pallidum demonstrated pallilysin is a target of opsonic antibodies, consistent with a host component-interacting, surface-exposed cellular location. Wild-type pallilysin, but not the HEXXA mutant, degraded fibrin clots, and similarly heterologous expression of pallilysin in the non-invasive spirochete Treponema phagedenis facilitated fibrin clot degradation. Collectively these results identify pallilysin as a surface-exposed metalloprotease within T. pallidum that possesses an HEXXH active site motif and requires autocatalytic or host-mediated cleavage of a pro-domain to attain full host component-directed proteolytic activity. Furthermore, our finding that expression of pallilysin confers upon T. phagedenis the capacity to degrade fibrin clots suggests this capability may contribute to the dissemination potential of T. pallidum.  相似文献   

12.
The genomic DNA fragment which contains ribosomal RNA (rRNA) genes for Treponema phagedenis was cloned into bacteriophage vector lambda EMBL3. A restriction map of the fragment was constructed and the organization of the rRNA genes was determined. The fragment contained at least one copy of the 16S, 23S and 5S sequences and the genes are arranged in the order 16S-23S-5S. Southern hybridization using radiolabeled rRNA gene probes to genomic DNA from T. phagedenis strain Reiter and T. pallidum strain Nichols showed that these organisms have two radioactive fragments which hybridize to the probes in their genome. These results suggest that both pathogenic and non-pathogenic strains of Treponema may carry at least two sets of rRNA genes on their chromosomes.  相似文献   

13.
14.
Genetic relationships among two strains of Treponema pallidum (Nichols and KKJ) and a strain of T. pertenue were determined by measuring the degree of deoxyribonucleic acid sequence homology. The results in indicated that these three virulent, noncultivable treponemes were genetically indistinguishable. Like T. pallidum (Nichols), T. pertenue (Gauthier) had no detectable deoxyribonucleic acid sequence homology with T. phagedenis (biotype Reiter), T. refringens (biotype Noguchi), or with salmon sperm.  相似文献   

15.
梅毒是一种由梅毒螺旋体(Treponema.pallidum,Tp)感染所引起的慢性性传播疾病。近年来,其发病率居高不下,引起了全社会广泛的关注。随着分子生物技术的发展和人们的不断探究发现,膜蛋白可能在Tp致病过程中与宿主黏附、宿主免疫炎症反应等方面起着非常重要的作用,可能为Tp的主要致病因子。因此,对Tp膜蛋白的研究是认识其对宿主的致病性和进行致病机制研究的关键,就Tp的几种主要免疫相关膜蛋白的研究进展作了简要综述。  相似文献   

16.
Syphilis is a chronic disease caused by the bacterium Treponema pallidum subsp. pallidum. Treponema pallidum disseminates widely throughout the host and extravasates from the vasculature, a process that is at least partially dependent upon the ability of T. pallidum to interact with host extracellular matrix (ECM) components. Defining the molecular basis for the interaction between T. pallidum and the host is complicated by the intractability of T. pallidum to in vitro culturing and genetic manipulation. Correspondingly, few T. pallidum proteins have been identified that interact directly with host components. Of these, Tp0751 (also known as pallilysin) displays a propensity to interact with the ECM, although the underlying mechanism of these interactions remains unknown. Towards establishing the molecular mechanism of Tp0751-host ECM attachment, we first determined the crystal structure of Tp0751 to a resolution of 2.15 Å using selenomethionine phasing. Structural analysis revealed an eight-stranded beta-barrel with a profile of short conserved regions consistent with a non-canonical lipocalin fold. Using a library of native and scrambled peptides representing the full Tp0751 sequence, we next identified a subset of peptides that showed statistically significant and dose-dependent interactions with the ECM components fibrinogen, fibronectin, collagen I, and collagen IV. Intriguingly, each ECM-interacting peptide mapped to the lipocalin domain. To assess the potential of these ECM-coordinating peptides to inhibit adhesion of bacteria to host cells, we engineered an adherence-deficient strain of the spirochete Borrelia burgdorferi to heterologously express Tp0751. This engineered strain displayed Tp0751 on its surface and exhibited a Tp0751-dependent gain-of-function in adhering to human umbilical vein endothelial cells that was inhibited in the presence of one of the ECM-interacting peptides (p10). Overall, these data provide the first structural insight into the mechanisms of Tp0751-host interactions, which are dependent on the protein’s lipocalin fold.  相似文献   

17.
The periplasmic flagellum of Treponema phagedenis consists of the flagellar filament and hook-basal body. We report here a characterization of the hook gene and flagellar hook of T. phagedenis, and in the process of this analysis we found evidence that the hook polypeptide is likely cross-linked in situ. A T. phagedenis genomic library was screened with a Treponema pallidum antiserum, and the DNA segments from several positive plaques were subcloned and sequenced. DNA sequencing of two overlapping segments revealed a 1,389-nucleotide (nt) open reading frame (ORF) with a deduced amino acid sequence that was 36% identical to that of FlgE, the hook polypeptide of Salmonella typhimurium. This gene was designated T. phagedenis flgE. Beginning at 312 nt downstream from flgE was a partial ORF of 486 nt with a deduced amino acid sequence that was 33% identical to that of MotA of Bacillus subtilis, a polypeptide that enables flagellar rotation. Upstream of flgE, separated by 39 nt, was a partial (291-nt) ORF with a deduced amino acid sequence that was homologous to that of ORF8, a polypeptide of unknown function located in an operon encoding polypeptides involved in motility of B. subtilis. The T. phagedenis flgE gene was cloned into an Escherichia coli protein expression plasmid, and the purified recombinant protein was used to prepare a FlgE antiserum. Western blots (immunoblots) of whole-cell lysates probed with this antiserum revealed a 55-kDa polypeptide and a ladder of polypeptide bands with increasing molecular masses. T. phagedenis hooks were then isolated and purified, and electron microscopic analysis revealed that the morphology of the hooks resembled that in other bacteria. The hooks were slightly curved and had an average length of 69 +/- 8 nm and a diameter of 23 +/- 1 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blots of purified hook preparations using the FlgE antiserum also revealed a polypeptide ladder, suggesting that the hooks are composed of a covalently cross-linked polypeptide.  相似文献   

18.
Two new tprD alleles have been identified in Treponema pallidum: tprD2 is found in 7 of 12 T. pallidum subsp. pallidum isolates and 7 of 8 non-pallidum isolates, and tprD3 is found in one T. pallidum subsp. pertenue isolate. Antibodies against TprD2 are found in persons with syphilis, demonstrating that tprD2 is expressed during infection.  相似文献   

19.
目的:建立以纤维膜为载体的检测梅毒螺旋体抗体的方法,检查病人血清中对梅毒螺旋体多种抗原的抗体,用于梅毒感染的诊断。方法:将基因工程表达及纯化的梅毒螺旋体蛋白tp15、tp17、tp42和tp47分别结合在纤维膜上,用载抗原的纤维膜条检查血清中的抗体,抗体阳性者在相应抗原位置显示出特异条带。结果:梅毒螺旋体感染者血清中存在特异性抗体,在检查的460份临床诊断的患者血清中,对tp15、tp17、tp42和tp47抗原的抗体检出率分别为41.3%、100%、98.7%和51.7%;134份献血员血清抗体阴性。结论:建立的检测梅毒螺旋体感染的方法可同时检查对多种抗原的抗体,以纤维膜条作为诊断条检测血清抗体方法简便,用于临床诊断更特异、更敏感。  相似文献   

20.
In this paper we apply an algorithm developed by Poland (Biopolymers 13 (1974) 1859) to treat the statistical mechanics of the thermal unwinding of DNA to the genome of Treponema pallidum, the syphilis spirochete. We calculate probability profiles (giving the probability that each unit in the molecule is in the helix-state) and other statistical distributions for genes and sequences of genes, the longest containing 100 genes and 107,139 base pairs (approximately 10% of the genome).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号