首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is one of the most recent physiological functions attributed to products of cytochrome P-450 (CYP450) enymes. To test this at a molecular level in human cells, we used a cloned cDNA for the human endothelial enzyme CYP450 2C9 (CYP2C9) to study growth as well as differentiation of human microvascular endothelial cells from the lung (HMVEC-L). Using adenoviral vectors overexpressing mRNA for CYP2C9, we show that the presence of CYP2C9 doubles thymidine incorporation and stimulates proliferation of primary cultures of endothelial cells compared with Ad5-GFP (control) in 24 h. In addition, there is a significant increase of tube formation in Matrigel after infection of HMVEC-L with Ad5-2C9 than with Ad5-GFP. More interestingly, Ad5-2C9 expressing the antisense product of CYP2C9 (2C9AS) inhibited tube formation compared with both Ad5-GFP as well as the Ad5-2C9 constructs. Finally, we tested the most abundant arachidonic acid metabolite of CYP2C9, 14,15-epoxyeicosatrienoic acid, which induced angiogenesis in vivo when embedded in Matrigel plugs and implanted in adult rats. These data support an important role for CYP2C9 in promoting angiogenesis.  相似文献   

2.
3.
4.
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H(+)-ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, to maintain pH(cyt) homeostasis. Immunocytochemical studies revealed V-H(+)-ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na(+) and HCO(3)(-) that were similar to those observed in the presence of either Na(+), or Na(+) and HCO(3)(-). The Na(+)- and HCO(3)(-)-independent pH(cyt) recovery was inhibited by bafilomycin A(1), a V-H(+)-ATPase inhibitor. These studies show a Na(+)- and HCO(3)(-)-independent pH(cyt) regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases.  相似文献   

5.
Basal lamina formation by cultured microvascular endothelial cells   总被引:4,自引:1,他引:3       下载免费PDF全文
The production of a basal lamina by microvascular endothelial cells (MEC) cultured on various substrata was examined. MEC were isolated from human dermis and plated on plastic dishes coated with fibronectin, or cell-free extracellular matrices elaborated by fibroblasts, smooth muscle cells, corneal endothelial cells, or PF HR9 endodermal cells. Examination of cultures by electron microscopy at selected intervals after plating revealed that on most substrates the MEC produced an extracellular matrix at the basal surface that was discontinuous, multilayered, and polymorphous. Immunocytochemical studies demonstrated that the MEC synthesize and deposit both type IV collagen and laminin into the subendothelial matrix. When cultured on matrices produced by the PF HR9 endodermal cells MEC deposit a subendothelial matrix that was present as a uniform sheet which usually exhibited lamina rara- and lamina densa-like regions. The results indicate that under the appropriate conditions, human MEC elaborate a basal lamina-like matrix that is ultrastructurally similar to basal lamina formed in vivo, which suggests that this experimental system may be a useful model for studies of basal lamina formation and metabolism.  相似文献   

6.
The transport characteristics of L- and D-histidine through the blood-lung barrier were studied in cultured rat lung microvascular endothelial cells (LMECs). L-Histidine uptake was a saturable process. The addition of metabolic inhibitors [2,4-dinitrophenol (DNP) and rotenone] reduced the uptake rate of L-histidine. Ouabain, an inhibitor of Na(+)-K(+)-ATPase, also reduced uptake of L-histidine. Moreover, the initial L-histidine uptake rate was reduced by the substitution of Na(+) with choline chloride and choline bicarbonate in the incubation buffer. The system N substrate, L-glutamic acid gamma-monohydroxamate, also inhibited uptake of L-histidine. However, system N-mediated transport was not pH sensitive. These results demonstrated that L-histidine is actively taken up by a system N transport mechanism into rat LMECs, with energy supplied by Na(+). Moreover, the Na(+)-independent system L substrate, 2-amino-2-norbornanecarboxylic acid (BCH), had an inhibitory effect on L-histidine uptake in Na(+) removal, indicating facilitated diffusion by a Na(+)-independent system L transport into the rat LMECs. These results provide evidence for there being at least two pathways for L-histidine uptake into rat LMECs, a Na(+)-dependent system N and Na(+)-independent system L process. On the other hand, the uptake of D-histidine into rat LMECs was not reduced by the addition of DNP, rotenone, or ouabain, or by Na(+) replacement. Although the uptake of D-histidine was reduced in the presence of BCH, the addition of L-glutamic acid gamma-monohydroxamate did not significantly decrease uptake of D-histidine. These results suggest that the uptake of D-histidine by rat LMECs has different characteristics compared with its isomer, L-histidine, indicating that system N transport did not involve D-histidine uptake.  相似文献   

7.
8.
Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com ). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2‐D nano‐ESI LC‐MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two‐sample t‐test, P < 0.05) as up‐ or down‐regulated (fold change >2). We found that in TCs there are 38 up‐regulated proteins at the 5th day and 26 up‐regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up‐regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54‐fold) and von Willebrand factor (5.74‐fold). The 26 up‐regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down‐regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro‐proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.  相似文献   

9.
Regulation of sterol transport in human microvascular endothelial cells   总被引:1,自引:0,他引:1  
In cultured human dermal microvessel endothelial cells, the rate of efflux (about twofold greater than for fibroblasts under equivalent conditions) was coupled to an equivalent high rate of sterol net transport from the cells to the medium. This net transport was linked with esterification via lecithin:cholesterol acyltransferase. Since the use of free sterol by plasma transferase is constant, such increased net transport indicates that endothelial cells are highly efficient, in competition with plasma lipoproteins, in supplying free sterol for esterification. These results indicate the marked ability of endothelial cells to regulate and maintain their sterol balance in the face of high sterol levels to which these cells are uniquely exposed in human plasma.  相似文献   

10.
AIM: To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line, iHDME1.METHODS: We developed a spontaneous immortalization method. This approach is based on the application of optimized culture media and culture conditions without addition of any exogenous oncogenes or carcinogens. Using this approach, we have successfully established a microvascular endothelial cell line, iHDME1, from primary human dermal microvascular endothelial cells. iHDME1 cells have been maintained in culture dishes for more than 50 passages over a period of 6 mo. Using a GFP expressing retrovirus, we generated a GFP-stable cell line (iHDME1-GFP).RESULTS: iHDME1 retain endothelial morphology and uniformly express endothelial markers such as VEGF receptor 2 and VE-cadherin but not α-smooth muscle actin (α-SM-actin) and cytokeratin 18, markers for smooth muscle cells and epithelial cells respectively. These cells retain endothelial properties, migrate in response to VEGF stimulation and form 3-D vascular structures in Matrigel, similar to the parental cells. There is no significant difference in cell cycle profile between the parental cells and iHDME1 cells. Further analysis indicates enhanced stemness in iHDME1 cells compared to parental cells. iHDME1 cells display elevated expression of CD133 and hTERT.CONCLUSION: iHDME1 cells will be a valuable source for studying angiogenesis.  相似文献   

11.
Cyclopentenylcytosine (CPEC) is cytotoxic to HT-29 cells in vitro and in vivo. Treatment with CPEC resulted in sensitizing HT-29 cells to cisplatin (CDDP), as evidenced by synergistic cytotoxicity. CPEC exhibits potent cytotoxicity to HT-29 cells in vitro, 2 and 24 h exposure providing an LC50 of 2.4 and 0.46 microM, respectively. Exposure of HT-29 cells to CDDP for 2 h resulted in an LC50 of 26 microM. Treatment of HT-29 cells with 1.0 or 1.25 microM CPEC and then incubating with CDDP showed synergistic cytotoxicity. Lesser synergy at very high concentrations of CPEC was demonstrated when HT-29 cells were first exposed to CDDP and then incubated with CPEC. Combination index calculations showed synergistic cytotoxicity in HT-29 cells when CPEC was combined with CDDP. Synergistic antitumor activity was demonstrable in vivo in mice transplanted with HT-29 tumor when treated with a combination of CPEC and CDDP without undue toxicity, since no excessive loss in mouse body weight or overt pathology was observed. CPEC had no influence on the total DNA adduct formation and CDDP did not affect the intracellular levels of CPEC or its metabolites, suggesting that enhanced CDDP cytotoxicity resulted from a step subsequent to excision of platinum-cross-linked DNA. These studies support a new approach for augmenting cytotoxic effect of CPEC with CDDP in treating human colon carcinoma.  相似文献   

12.
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.  相似文献   

13.
Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1(high) cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account for the breakdown of endothelial barrier function, suggesting that biomechanical alterations are sufficient to facilitate the transmigration and invasion of invasive cancer cells into 3D-ECMs.  相似文献   

14.
15.
Vascular endothelium plays an essential role in the pathogenesis of vasoocclusion. The changes in the endothelial cell function can be triggered by changes in gene expression caused by interaction with cytokines and blood cells. Using cDNA arrays, we have recently reported complex patterns of gene expression after stimulation of endothelial cells with TNFalpha and IL-1beta. Better understanding of the time course of gene expression changes, their concentration dependence and reversibility after withdrawal of the offending cytokine is essential for successful prevention and therapy of vasoocclusion. Here we present a detailed study of the concentration dependence and time course of gene expression in endothelial cells after their exposure to TNFalpha and IL-1beta. We focus on the adhesion molecules (VCAM-1, ICAM-1, E-selectin) and cytokines (IL-6, GCP-2, MCP-1) that are likely to contribute to vasoocclusion. We report differences in the time course and intensity of their expression and in their response to TNFalpha and IL-1beta stimulation. We demonstrate that expression of the studied genes is upregulated by low TNFalpha concentrations that better reflect the TNFalpha levels detected in the plasma of patients developing vasoocclusion. These results help to understand the changes in the endothelium and to design rational prevention and therapy of vasoocclusion.  相似文献   

16.
17.
Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1–14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10–50 μM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy. J. Cell. Biochem. 71:491–501, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

19.
In microvessels, periendothelial cells expressing alpha smooth muscle actin (alphaSMA) interact with the endothelial cells and are essential for vessel maturation and stabilization. In adult tissues, the cellular origin of the periendothelial cells is still not clear, in particular in humans. To determine the origin of human periendothelial cells, we used a recently developed 3D co-culture system that mimics human skin connective tissue. This system is composed of normal human dermal fibroblasts (NHDF), human dermal microvascular endothelial cells (HMEC-1), and a collagen matrix. In this system, "microvessels" composed of an endothelial lumen associated with periendothelial cells develop. Using this co-culture system, we (i) labelled fibroblasts with the vital dye CFDA-SE, cultured them with unlabelled endothelial cells, and observed that only endothelium-associated CFDA-SE-labelled cells express alphaSMA; (ii) infected endothelial cells with a retrovirus stably expressing eGFP, cultured them with unlabelled fibroblasts, and observed that cells expressing alphaSMA did not co-express eGFP, but were associated with the eGFP-expressing endothelial cells of the microvessels. Together, these results indicate that periendothelial cells arise by differentiation from fibroblasts and that they require interaction with endothelial cells to do so.  相似文献   

20.
Cultivation of microvascular endothelial cells from human preputial skin   总被引:2,自引:0,他引:2  
Summary A procedure is described for the isolation and cultivation of microvascular endothelium from human skin. Neonatal foreskins are pooled, washed, minced, and dissociated by a mixture of collagenase and dispase. Microvascular endothelium, liberated in the form of intact capillary fragments, is incompletely separated from fibroblasts and epidermal cells by sieving through nylon mesh, followed by velocity sedimentation on 5% bovine serum albumin. The endothelium-enriched fraction has been maintained in primary culture for up to 3 weeks. The resulting epithelioid colonies have been characterized morphologically by both light and transmission electron microscopy and manifest all of the structural features that distinguish other, large-vessel endothelia in culture. In addition, immunohistochemical studies using an indirect fluorescent antibody technique demonstrate that these cells contain the endothelium-specific product, Factor VIII antigen. This work was supported by National Institutes of Health Grants AM18904 and AM20571, the RGK Foundation, the Charlotte and Sidney Lifschultz Foundation, the Juvenile Diabetes Foundation, and the South Carolina Geenral Medical Faculty Research Appropriation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号