首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, four full-length Dof (DNA-binding with one finger) genes from Sorghum bicolor namely SbDof1, SbDof19, SbDof23, and SbDof24 were PCR amplified, gel eluted, cloned, and sequenced (accession number HQ540084, HQ540085, HQ540086, and HQ540087, respectively). These sequences were further characterized in silico by subjecting them to homology search, multiple sequence alignment, phylogenetic tree construction, and protein functional analysis, revealing their identity to Dof like proteins. Phylogenetic analysis of cloned SbDof genes along with other reported Dof proteins revealed existence of two major groups A and B, while group A was further bifurcated into two sub-groups (viz., I and II). Motif scan analysis of SbDof proteins revealed the presence of glycine- and alanine-rich profiles in SbDof1, while proline-rich profile was observed in SbDof23. Asparagines, methionine, and serine-rich profiles were common in case of both SbDof19 and SbDof24 proteins. The three dimensional structures of SbDof proteins were predicted by I-TASSER server based on multiple threading method. The modeled structures were refined by energy minimization and their stereo chemical qualities were validated by PROCHECK and QMEAN server indicating the acceptability of the predicted models. The final models were submitted to PMDB database with assigned PMDB IDs, i.e., PM0077395, PM0077396, PM0077397, PM0077398, and PM0076448 for SbDof1, SbDof19, SbDof23, SbDof24, and Dof domain, respectively. Based on gene ontology (GO) terms in I-TASSER server putative functions of modeled SbDof proteins were also predicted.  相似文献   

2.
3.
4.
All thermotolerant methanol-utilizing Bacillus spp. investigated by us possess a NAD-dependent methanol dehydrogenase (MDH) activity which is stimulated by a protein present in the soluble fraction of Bacillus sp. C1 cells. This activator protein was purified to homogeneity from Bacillus sp. C1 cells grown at a low dilution rate in a methanol-limited chemostat culture. The native activator protein (Mr = 50,000) is a dimer of Mr = 27,000 subunits. The N-terminal amino acid sequence revealed no significant similarity with any published sequences. Stimulation of MDH activity by the activator protein required the presence of Mg2+ ions. Plots of specific MDH activity versus activator protein concentration revealed Michaelis-Menten type kinetics. In the presence of activator protein, MDH displayed biphasic kinetics (v versus substrate concentration) toward C1-C4 primary alcohols and NAD. The data suggest that in the presence of activator protein plus Mg2+ ions, MDH possesses a high affinity active site for alcohols and NAD, in addition to an activator- and Mg2(+)-independent low affinity active site. The activation mechanism remains to be elucidated.  相似文献   

5.
6.
In the methylotrophic bacterium Methylobacterium extorquens strain AM1, MxaF, a Ca2+-dependent methanol dehydrogenase (MDH), is the main enzyme catalyzing methanol oxidation during growth on methanol. The genome of strain AM1 contains another MDH gene homologue, xoxF1, whose function in methanol metabolism has remained unclear. In this work, we show that XoxF1 also functions as an MDH and is La3+-dependent. Despite the absence of Ca2+ in the medium strain AM1 was able to grow on methanol in the presence of La3+. Addition of La3+ increased MDH activity but the addition had no effect on mxaF or xoxF1 expression level. We purified MDH from strain AM1 grown on methanol in the presence of La3+, and its N-terminal amino acid sequence corresponded to that of XoxF1. The enzyme contained La3+ as a cofactor. The ΔmxaF mutant strain could not grow on methanol in the presence of Ca2+, but was able to grow after supplementation with La3+. Taken together, these results show that XoxF1 participates in methanol metabolism as a La3+-dependent MDH in strain AM1.  相似文献   

7.
UAP56/SUB2 is a DExD/H-box RNA helicase that is critically involved in pre-mRNA splicing and mRNA nuclear export. This helicase is broadly conserved and essential in many eukaryotic lineages, including protozoan and metazoan parasites. Previous research suggests that helicases from parasites could be promising drug targets for treating parasitic diseases. Accordingly, characterizing the structure and function of these proteins is of interest for structure-based, de novo design of new lead compounds. Here, we used homology modeling to construct a three-dimensional structure of PfU52 (PMDB ID: PM0079288), the Plasmodium falciparum ortholog of UAP56/SUB2, and explored the detailed architecture of its functional sites. Comparative in silico analysis revealed that although PfU52 shared many physicochemical, structural and dynamic similarities with its human homolog, it also displayed some unique features that could be exploited for drug design.  相似文献   

8.
甲醇和甲烷等一碳原料来源广泛,价格低廉,是生物制造的理想原料。甲醇脱氢酶(Methanol dehydrogenase,MDH)催化甲醇生成甲醛是一碳代谢的关键反应。目前已从天然甲基营养菌中发现了多种利用不同辅因子,具有不同酶学性质的MDH。其中,烟酰胺腺嘌呤双核苷酸(NAD)依赖型MDH被广泛应用于构建人工甲基营养菌。但是,NAD依赖型MDH的甲醇氧化活性较低,对甲醇的亲和力较差,导致甲醇氧化成为人工甲基营养菌代谢甲醇的限速步骤。为了提高甲醇氧化速率,进而提高人工甲基营养菌的甲醇利用效率,近年来大量研究集中于MDH的挖掘与改造研究。文中系统综述了不同类型MDH的发现、表征、改造以及在人工甲基营养菌中的应用进展,详细阐述了MDH的定向进化和多酶复合体的构建,并展望了通过细胞生长偶联的蛋白质进化和蛋白质理性设计获得高活性MDH的潜在策略。  相似文献   

9.
Pathogenesis-related protein 1a of Hordeum vulgare subsp. Vulgare (HvPR-1a) is induced by various pathogens and stress related factors. It plays important roles in plant defense system. Since the discovery of HvPR-1a a great deal of research has been focused on its isolation and characterization. However, three dimensional structure of HvPR-1a is still unknown. 3D structure can be used for determining protein function, and identifying novel protein folds and potential targets for regulation. The protein model was developed using MODELLER 9v10. Physicochemical characterization and functional annotation of the model carried out with Expasy''s ProtParam server and three different conserved domain finding programs including InterProScan, Proteins Families Database (Pfam), and NCBI Conserved Domains Database (NCBI-CDD). Applying validation programs revealed that the model has good quality and the RMSD value is 0.7. The predicted model submitted in Protein Model Database, PMDB for public use. This model will be used in wide range of studies for functional analysis and improvement activity of the protein.  相似文献   

10.
The highly conserved region of the mxaF gene that encodes the large subunit of methanol dehydrogenase (MDH) was cloned and sequenced from Methylophaga sp. strain MP cells. The calculated G + C content of the conserved region was found to be 44.9%. The nucleotide sequence homology of the region to those from methylotrophs was approximately 43.5%, while the identity of the deduced amino acid sequence to other MxaF peptides was approximately 76.8%. Analysis of the codon usage revealed that UUC and CGU codons seem to be used only for phenylalanine and arginine, respectively. The aligned amino acid sequences show that several key amino acids that are required for the MDH enzyme activity are located in the deduced MxaF peptide, together with tryptophan-docking motifs, called W4 and W5.  相似文献   

11.
Carbon sources such as methanol and glycerol are used for enhancing denitrification at wastewater treatment plants, which are required to meet increasingly stringent effluent nitrogen limits. Consequently, dosing strategies for these compounds could benefit from the development and application of molecular activity biomarkers to infer and distinguish between methanol- or glycerol-based denitrification in activated sludge. In this study, the applicability of genes coding for methanol dehydrogenase (mdh2 and mxaF) and glycerol dehydrogenase (dhaD) as potential biomarkers of denitrification activity using these specific substrates was explored and confirmed using a two-pronged approach. First, during short-term spikes of activated sludge biomass with glycerol, the ability of dhaD mRNA concentrations to closely track nitrate depletion profiles was demonstrated. Second, a high-degree of correlation of the mRNA concentrations of mdh2, mxaF and dhaD with methanol- and glycerol-based denitrification kinetics during long-term bioreactor operation using these substrates was also shown. Based on these results, expression of mdh2, mxaF and dhaD genes are promising biomarkers of in situ denitrification activity on methanol and glycerol, respectively, in mixed-culture engineered wastewater treatment processes.  相似文献   

12.
Kim SW  Kim JA  Kim E  Ro YT  Song T  Kim YM 《Molecules and cells》2002,14(2):214-223
A blue protein was purified from the Methylobacillus sp. strain SK1 that is grown on methanol in the presence of copper ion. This protein was found to be a monomer with a molecular weight of 13,500. The Isoelectric point of the protein was estimated to be 8.8. The spectrum of the protein that was treated with ferricyanide showed a broad peak around 620 nm, but that of the dithionite-treated protein revealed no peaks. It contained 0.83 mol of EDTA-stable copper per mol protein. Under air, the protein accelerated the inactivation of methanol dehydrogenase (MDH). The protein was reducible by phenazine methosulfate or by active MDH that was prepared from cells that were grown in the absence of added copper, but not by methanol, dichlorophenol indophenol, or inactive MDH that was prepared from cells that were grown in the presence of added copper. It was also reducible by active MDH in the presence of methanol. The absorption peak at 340 nm of the active MDH disappeared after the enzyme was treated with ferricyanide, hydrogen peroxide, or the purified blue protein. The inactive MDH also showed no peak at 340 nm. The 340-nm peak was not recovered after incubation of the inactive MDH and blue protein-treated active MDH with dithionite or methanol. The inactive MDH and blue protein-treated active MDH co-migrated with the active MDH preparation on nondenaturing polyacrylamide gel, and contained two non-identical subunits with molecular weights that were identical to those of the active MDH. The N-terminal amino acid sequence of the protein was Ala-Gly-Cys-Ser-Val-Asp-Val-Glu-Ala-Asn-Asp-Ala-Met-Gln-Phe. An analysis of the amino acid composition revealed that the protein contained no tryptophan. It contained three cysteines per mol protein. The blue protein in Methylobacillus sp. strain SK1 was produced only in the cells that were grown in the copper-supplemented medium.  相似文献   

13.
This study is the first demonstration that a diverse facultatively methylotrophic microbiota exists in some Antarctic locations. PCR amplification of genes diagnostic for methylotrophs was carried out with bacterial DNA isolated from 14 soil and sediment samples from ten locations on Signy Island, South Orkney Islands, Antarctica. Genes encoding the mxaF of methanol dehydrogenase, the fdxA for Afipia ferredoxin, the msmA of methanesulfonate monooxygenase, and the 16S rRNA gene of Methylobacterium were detected in all samples tested. The mxaF gene sequences corresponded to those of Hyphomicrobium, Methylobacterium, and Methylomonas. Over 30 pure cultures of methylotrophs were isolated on methanesulfonate, dimethylsulfone, or dimethylsulfide from ten Signy Island lakes. Some were identified from 16S rRNA gene sequences (and morphology) as Hyphomicrobium species, strains of Afipia felis, and a methylotrophic Flavobacterium strain. Antarctic environments thus contain diverse methylotrophic bacteria, growing on various C1-substrates, including C1-sulfur compounds.  相似文献   

14.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

15.
Malate dehydrogenase (MDH) catalyzes the conversion of NAD+ and malate to NADH and oxaloacetate in the citric acid cycle. Eukaryotes have one MDH isozyme that is imported into the mitochondria and one in the cytoplasm. We overexpressed and purified Caenorhabditis elegans cytoplasmic MDH-1 and mitochondrial MDH-2 in E. coli. Our goal was to compare the kinetic and structural properties of these enzymes because C. elegans can survive adverse environmental conditions, such as lack of food and elevated temperatures. In steady-state enzyme kinetics assays, we measured KM values for oxaloacetate of 54 and 52 μM and KM values for NADH of 61 and 107 μM for MDH-1 and MDH-2, respectively. We partially purified endogenous MDH-1 and MDH-2 from a mixed population of worms and separated them using anion exchange chromatography. Both endogenous enzymes had a KM for oxaloacetate similar to that of the corresponding recombinant enzyme. Recombinant MDH-1 and MDH-2 had maximum activity at 40 °C and 35 °C, respectively. In a thermotolerance assay, MDH-1 was much more thermostable than MDH-2. Protein homology modeling predicted that MDH-1 had more intersubunit salt-bridges than mammalian MDH1 enzymes, and these ionic interactions may contribute to its thermostability. In contrast, the MDH-2 homology model predicted fewer intersubunit ionic interactions compared to mammalian MDH2 enzymes. These results suggest that the increased stability of MDH-1 may facilitate its ability to remain active in adverse environmental conditions. In contrast, MDH-2 may use other strategies, such as protein binding partners, to function under similar conditions.  相似文献   

16.
Two proteins specifically involved in methanol oxidation in the methylotrophic bacterium Methylobacterium extorquens have been modified by site-directed mutagenesis. Mutation of the proposed active site base (Asp303) to glutamate in methanol dehydrogenase (MDH) gave an active enzyme (D303E-MDH) with a greatly reduced affinity for substrate and with a lower activation energy. Results of kinetic and deuterium isotope studies showed that the essential mechanism in the mutant protein was unchanged, and that the step requiring activation by ammonia remained rate limiting. No spectrally detectable intermediates could be observed during the reaction. The X-ray structure, determined to 3 A resolution, of D303E-MDH showed that the position and coordination geometry of the Ca2+ ion in the active site was altered; the larger Glu303 side chain was coordinated to the Ca2+ ion and also hydrogen bonded to the O5 atom of pyrroloquinoline quinone (PQQ). The properties and structure of the D303E-MDH are consistent with the previous proposal that the reaction in MDH is initiated by proton abstraction involving Asp303, and that the mechanism involves a direct hydride transfer reaction. Mutation of the two adjacent cysteine residues that make up the novel disulfide ring in the active site of MDH led to an inactive enzyme, confirming the essential role of this remarkable ring structure. Mutations of cytochrome c(L), which is the electron acceptor from MDH was used to identify Met109 as the sixth ligand to the heme.  相似文献   

17.
Representatives of the genus Beijerinckia are known as heterotrophic, dinitrogen-fixing bacteria which utilize a wide range of multicarbon compounds. Here we show that at least one of the currently known species of this genus, i.e., Beijerinckia mobilis, is also capable of methylotrophic metabolism coupled with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. A complete suite of dehydrogenases commonly involved in the sequential oxidation of methanol via formaldehyde and formate to CO2 was detected in cell extracts of B. mobilis grown on CH3OH. Carbon dioxide produced by oxidation of methanol was further assimilated via the RuBP pathway as evidenced by reasonably high activities of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Detection and partial sequence analysis of genes encoding the large subunits of methanol dehydrogenase (mxaF) and form I RubisCO (cbbL) provided genotypic evidence for methylotrophic autotrophy in B. mobilis.  相似文献   

18.
Some members of Burkholderiales are able to grow on methanol but lack the genes (mxaFI) responsible for the well-characterized two-subunit pyrroloquinoline quinone-dependent quinoprotein methanol dehydrogenase that is widespread in methylotrophic Proteobacteria. Here, we characterized novel, mono-subunit enzymes responsible for methanol oxidation in four strains, Methyloversatilis universalis FAM5, Methylibium petroleiphilum PM1, and unclassified Burkholderiales strains RZ18-153 and FAM1. The enzyme from M. universalis FAM5 was partially purified and subjected to matrix-assisted laser desorption ionization-time of fight peptide mass fingerprinting. The resulting peptide spectrum was used to identify a gene candidate in the genome of M. petroleiphilum PM1 (mdh2) predicted to encode a type I alcohol dehydrogenase related to the characterized methanol dehydrogenase large subunits but at less than 35% amino acid identity. Homologs of mdh2 were amplified from M. universalis FAM5 and strains RZ18-153 and FAM1, and mutants lacking mdh2 were generated in three of the organisms. These mutants lost their ability to grow on methanol and ethanol, demonstrating that mdh2 is responsible for oxidation of both substrates. Our findings have implications for environmental detection of methylotrophy and indicate that this ability is widespread beyond populations possessing mxaF, the gene traditionally used as a genetic marker for environmental detection of methanol-oxidizing capability. Our findings also have implications for understanding the evolution of methanol oxidation, suggesting a convergence toward the enzymatic function for methanol oxidation in MxaF and Mdh2-type proteins.  相似文献   

19.
20.
When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5 insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-beta-galactosidase fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号