首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Induced fit of RNA on binding the L7Ae protein to the kink-turn motif   总被引:4,自引:2,他引:2  
The kink-turn is a widespread motif in RNA consisting of a three-nucleotide bulge flanked on one side by consecutive A3G mismatches. Important examples are found in the ribosome, U4 RNA, and in snoRNAs involved in RNA modification. The motif is a common protein binding site, and the RNA has been found to adopt a tightly kinked conformation in crystal structures. However, in free solution there is a dynamic exchange between kinked and extended conformations, with the equilibrium driven toward the kinked form by the addition of metal ions. Here we used fluorescence resonance energy transfer (FRET) to show that the L7Ae protein of Archaeoglobus fulgidus binds to RNA containing a kink-turn with nanomolar affinity, and induces folding into the tightly kinked conformation even in the absence of metal ions. Thus this RNA may act as a relatively flexible hinge during RNA folding, until fixed into its ultimate kinked structure by the binding of L7 or related protein.  相似文献   

2.
The kink turn (K-turn) is a common motif in RNA structure, found in many RNA species important in translation, RNA modification and splicing, and the control of gene expression. In general the K-turn comprises a three nucleotide bulge followed by trans sugar-Hoogsteen G·A pairs. The RNA adopts a tightly kinked conformation, and is a common target for binding proteins, exemplified by the L7Ae family. We have measured the rates of association and dissociation for the binding of L7Ae to the Kt-7 kink turn, from which we calculate an affinity of KD = 10 pM. This high affinity is consistent with the role of this binding as the first stage in the assembly of key functional nucleoproteins such as box C/D snoRNP. Kink-turn RNA undergoes a two-state transition between the kinked conformation, and a more extended structure, and folding into the kinked form is induced by divalent metal ions, or by binding of proteins of the L7Ae class. The K-turn provides an excellent, simple model for RNA folding, which can be dissected at the atomic level. We have analyzed the contributions of the hydrogen bonds that form the G·A pairs to the ion- and protein-induced folding of the K-turn. We find that all four hydrogen bonds are important to the stability of the kinked form of the RNA, and we can now define all the important hydrogen bonding interactions that stabilize the K-turn. The high affinity of L7Ae binding is coupled to the induced folding of the K-turn, allowing some sub-optimal variants to adopt the kinked geometry. However, in all such cases the affinity is lowered, and the results underline the importance of both G·A pairs to the stability of the K-turn.  相似文献   

3.
Suryadi J  Tran EJ  Maxwell ES  Brown BA 《Biochemistry》2005,44(28):9657-9672
Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal, box H/ACA, and box C/D sRNAs. The crystal structure of Methanocaldococcus jannaschii L7Ae has been determined to 1.45 A, and L7Ae's amino acid composition, evolutionary conservation, functional characteristics, and structural details have been analyzed. Comparison of the L7Ae structure to those of a number of related proteins with diverse functions has revealed significant structural homology which suggests that this protein fold is an ancient RNA-binding motif. Notably, the free M. jannaschii L7Ae structure is essentially identical to that with RNA bound, suggesting that RNA binding occurs through an induced-fit interaction. Circular dichroism experiments show that box C/D and C'/D' RNA motifs undergo conformational changes when magnesium or the L7Ae protein is added, corroborating the induced-fit model for L7Ae-box C/D RNA interactions.  相似文献   

4.
Snu13p is a bifunctional yeast protein involved in both messenger RNA splicing as well as ribosomal RNA maturation. Snu13p initiates assembly of ribonucleoprotein particles by interacting with a conserved RNA motif called kink turn. Unlike its archaeal homolog, L7Ae, Snu13p displays differential specificity for functionally distinct kink turns. Thus, the structures of Snu13p at different functional states, including those alone and bound with RNAs, are required to understand how the protein differentially interacts with kink turns. Although the structure of the human homolog of Snu13p bound with a spliceosomal RNA is known, there has not been a report of a structure of free Snu13p. This has hindered our ability to understand the structural basis for Snu13p's substrate specificity. We report a crystal structure of free Snu13p at 1.9A and a detailed structural comparison with its homologs. We show that free Snu13p has nearly an identical conformation as that of its human homolog bound with RNA. Interestingly, both eukaryotic proteins exhibit notable structural differences in their central beta-sheets as compared to their archaeal homolog, L7Ae. The observed structural differences offer a possible explanation to the observed difference in RNA specificity between Snu13p and L7Ae.  相似文献   

5.
6.
Small nucleolar RNAs (designated as snoRNAs in Eukarya or sRNAs in Archaea) can be grouped into H/ACA or C/D box snoRNA (sRNA) subclasses. In Eukarya, H/ACA snoRNAs assemble into a ribonucleoprotein (RNP) complex comprising four proteins: Cbf5p, Gar1p, Nop10p and Nhp2p. A homolog for the Nhp2p protein has not been identified within archaeal H/ACA RNPs thus far, while potential orthologs have been identified for the other three proteins. Nhp2p is related, particularly in the middle portion of the protein sequence, to the archaeal ribosomal protein and C/D box protein L7Ae. This finding suggests that L7Ae may be able to substitute for the Nhp2p protein in archaeal H/ACA sRNAs. By band shift assays, we have analyzed in vitro the interaction between H/ACA box sRNAs and protein L7Ae from the archaeon Archaeoglobus fulgidus. We present evidence that L7Ae forms specific complexes with three different H/ACA sRNAs, designated as Afu-4, Afu-46 and Afu-190 with an apparent K(d) ranging from 28 to 100 nM. By chemical and enzymatic probing we show that distinct bases located within bulges or loops of H/ACA sRNAs interact with the L7Ae protein. These findings are corroborated by mutational analysis of the L7Ae binding site. Thereby, the RNA motif required for L7Ae binding exhibits a structure, designated as the K-turn, which is present in all C/D box sRNAs. We also identified four H/ACA RNAs from the archaeal species Pyrococcus which exhibit the K-turn motif at a similar position in their structure. These findings suggest a triple role for L7Ae protein in Archaea, e.g. in ribosomes as well as H/ACA and C/D box sRNP biogenesis and function by binding to the K-turn motif.  相似文献   

7.
The kink-turn motif in RNA is dimorphic, and metal ion-dependent   总被引:5,自引:1,他引:4  
The kink-turn (K-turn) is a new motif in RNA structure that was identified by examination of the crystal structures of the ribosome. We examined the structural and dynamic properties of this element in free solution. The K-turn RNA exists in a dynamic equilibrium between a tightly kinked conformation and a more open structure similar to a simple bulge bend. The highly kinked form is stabilized by the noncooperative binding of metal ions, but a significant population of the less-kinked form is present even in the presence of relatively high concentrations of divalent metal ions. The conformation of the tightly kinked population is in excellent agreement with that of the K-turn structures observed in the ribosome by crystallography. The end-to-end FRET efficiency of this species agrees closely with that of the ribosomal K-turn, and the direction of the bend measured by comparative gel electrophoresis also corresponds very well. These results show that the tightly kinked conformation of the K-turn requires stabilization by other factors, possibly by protein binding, for example. The K-turn is therefore unlikely to be of itself a primary organizing feature in RNA.  相似文献   

8.
The kink turn is a widespread RNA motif that introduces an acute kink into the axis of duplex RNA, typically comprising a bulge followed by a G?A and A?G pairs. The kinked conformation is stabilized by metal ions, or the binding of proteins including L7Ae. We now demonstrate a third mechanism for the stabilization of k-turn structure, involving tertiary interactions within a larger RNA structure. The SAM-I riboswitch contains an essential standard k-turn sequence that kinks a helix so that its terminal loop can make?a?long-range interaction. We find that some sequence variations in the k-turn within the riboswitch do not prevent SAM binding, despite preventing the folding of the k-turn in isolation. Furthermore, two crystal structures show that the sequence-variant k-turns are conventionally folded within the riboswitch. This study shows that the folded structure of the k-turn can be stabilized by tertiary interactions within a larger RNA structure.  相似文献   

9.
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.  相似文献   

10.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5' leader sequence of precursor tRNA. We previously found that the reconstituted particle (RP) composed of RNase P RNA and four proteins (Ph1481p, Ph1601p, Ph1771p, and Ph1877p) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 exhibited the RNase P activity, but had a lower optimal temperature (around at 55 degrees C), as compared with 70 degrees C of the authentic RNase P from P. horikoshii [Kouzuma et al., Biochem. Biophys. Res. Commun. 306 (2003) 666-673]. In the present study, we found that addition of a fifth protein Ph1496p, a putative ribosomal protein L7Ae, to RP specifically elevated the optimum temperature to about 70 degrees C comparable to that of the authentic RNase P. Characterization using gel shift assay and chemical probing localized Ph1496p binding sites on two stem-loop structures encompassing nucleotides A116-G201 and G229-C276 in P. horikoshii RNase P RNA. Moreover, the crystal structure of Ph1496p was determined at 2.0 A resolution by the molecular replacement method using ribosomal protein L7Ae from Haloarcula marismortui as a search model. Ph1496p comprises five alpha-helices and a four stranded beta-sheet. The beta-sheet is sandwiched by three helices (alpha1, alpha4, and alpha5) at one side and two helices (alpha2 and alpha3) at other side. The archaeal ribosomal protein L7Ae is known to be a triple functional protein, serving as a protein component in ribosome and ribonucleoprotein complexes, box C/D, and box H/ACA. Although we have at present no direct evidence that Ph1496p is a real protein component in the P. horikoshii RNase P, the present result may assign an RNase P protein to L7Ae as a fourth function.  相似文献   

11.
The archaeal RNA binding protein L7Ae and its eukaryotic homolog 15.5 kDa/Snu13 recognize K-turns. This structural motif is canonically comprised of two stems (one with tandem A.G base pairs, the other with Watson-Crick pairs) linked by an asymmetric internal loop. L7Ae recognizes conventional K-turns in ribosomal and box C/D RNAs but also binds specifically to some box H/ACA RNAs at terminal stem loops. These have the A.G paired stem, but lack the Watson-Crick stem. The structure of Methanococcus jannaschii L7Ae bound to a symmetric duplex RNA without Watson-Crick stems demonstrates how a binding site for this component of diverse ribonucleoprotein complexes can be constructed with only the A.G stem and the loop. The RNA adopts a functional conformation with the aid of a base triple and tight binding of divalent cations. Comparison with the 15.5 kDa/Snu13-RNA complex structure suggests why the eukaryotic homolog does not recognize terminal stem loop L7Ae binding sites.  相似文献   

12.
The archaeal protein L7Ae and eukaryotic homologs such as L30e and 15.5kD comprise the best characterized family of K-turn-binding proteins. K-turns are an RNA motif comprised of a bulge flanked by canonical and noncanonical helices. They are widespread in cellular RNAs, including bacterial gene-regulatory RNAs such as the c-di-GMP-II, lysine, and SAM-I riboswitches, and the T-box. The existence in bacteria of K-turn-binding proteins of the L7Ae family has not been proven, although two hypothetical proteins, YbxF and YlxQ, have been proposed to be L7Ae homologs based on sequence conservation. Using purified, recombinant proteins, we show that Bacillus subtilis YbxF and YlxQ bind K-turns (K(d) ~270 nM and ~2300 nM, respectively). Crystallographic structure determination demonstrates that both YbxF and YlxQ adopt the same overall fold as L7Ae. Unlike the latter, neither bacterial protein recognizes K-loops, a structural motif that lacks the canonical helix of the K-turn. This property is shared between the bacterial and eukaryal family members. Comparison of our structure of YbxF in complex with the K-turn of the SAM-I riboswitch and previously determined structures of archaeal and eukaryal homologs bound to RNA indicates that L7Ae approaches the K-turn at a unique angle, which results in a considerably larger RNA-protein interface dominated by interactions with the noncanonical helix of the K-turn. Thus, the inability of the bacterial and eukaryal L7Ae homologs to bind K-loops probably results from their reliance on interactions with the canonical helix. The biological functions of YbxF and YlxQ remain to be determined.  相似文献   

13.
K-turn motifs are universal RNA structural elements providing a binding platform for proteins in several cellular contexts. Their characteristic is a sharp kink in the phosphate backbone that puts the two helical stems of the protein-bound RNA at an angle of 60°. However, to date no high-resolution structure of a naked K-turn motif is available. Here, we present the first structural investigation at atomic resolution of an unbound K-turn RNA (the spliceosomal U4-Kt RNA) by a combination of NMR and small-angle neutron scattering data. With this study, we wish to address the question whether the K-turn structural motif assumes the sharply kinked conformation in the absence of protein binders and divalent cations. Previous studies have addressed this question by fluorescence resonance energy transfer, biochemical assays and molecular dynamics simulations, suggesting that the K-turn RNAs exist in equilibrium between a kinked conformation, which is competent for protein binding, and a more extended conformation, with the population distribution depending on the concentration of divalent cations. Our data shows that the U4-Kt RNA predominantly assumes the more extended conformation in the absence of proteins and divalent cations. The internal loop region is well structured but adopts a different conformation from the one observed in complex with proteins. Our data suggests that the K-turn consensus sequence does not per se code for the kinked conformation; instead the sharp backbone kink requires to be stabilized by protein binders.  相似文献   

14.
Archaeal L7Ae is a multifunctional protein that binds to a distinctive K-turn motif in RNA and is found as a component in the large subunit of the ribosome, and in ribose methylation and pseudouridylation guide RNP particles. A collection of L7Ae-associated small RNAs were isolated from Sulfolobus solfataricus cell extracts and used to construct a cDNA library; 45 distinct cDNA sequences were characterized and divided into six groups. Group 1 contained six RNAs that exhibited the features characteristic of the canonical C/D box archaeal sRNAs, two RNAs that were atypical C/D box sRNAs and one RNA representative of archaeal H/ACA sRNA family. Group 2 contained 13 sense strand RNA sequences that were encoded either within, or overlapping annotated open reading frames (ORFs). Group 3 contained three sequences form intergenic regions. Group 4 contained antisense sequences from within or overlapping sense strand ORFs or antisense sequences to C/D box sRNAs. More than two-thirds of these sequences possessed K-turn motifs. Group 5 contained two sequences corresponding to internal regions of 7S RNA. Group 6 consisted of 11 sequences that were fragments from the 5' or 3' ends of 16S and 23S ribosomal RNA and from seven different tRNAs. Our data suggest that S. solfataricus contains a plethora of small RNAs. Most of these are bound directly by the L7Ae protein; the others may well be part of larger, transiently stable RNP complexes that contain the L7Ae protein as core component.  相似文献   

15.
H/ACA RNP complexes change uridines to pseudouridines in target non-coding RNAs in eukaryotes and archaea. H/ACA RNPs are comprised of a guide RNA and four essential proteins: Cbf5 (pseudouridine synthase), L7Ae, Gar1 and Nop10 in archaea. The guide RNA captures the target RNA via two antisense elements brought together to form a contiguous binding site within the pseudouridylation pocket (internal loop) of the guide RNA. Cbf5 and L7Ae interact independently with the guide RNA, and here we have examined the impacts of these proteins on the RNA in nucleotide protection assays. The results indicate that the interactions observed in a fully assembled H/ACA RNP are established in the sub-complexes, but also reveal a unique Cbf5–guide RNA interaction that is displaced by L7Ae. In addition, the results indicate that L7Ae binding at the kink (k)-turn of the guide RNA induces the formation of the upper stem, and thus also the pseudouridylation pocket. Our findings indicate that L7Ae is essential for formation of the substrate RNA binding site in the archaeal H/ACA RNP, and suggest that k-turn-binding proteins may remodel partner RNAs with important effects distant from the protein-binding site.  相似文献   

16.
An affinity resin-based pull-down method is convenient for the purification of biochemical materials. However, its use is difficult for the isolation of a molecular complex fully loaded with multiple components from a reaction mixture containing the starting materials and intermediate products. To overcome this problem, we have developed a new purification procedure that depends on sequential elimination of the residues. In practice, two affinity resins were used for purifying a triangular-shaped RNP (RNA-protein complex) consisting of three ribosomal proteins (L7Ae) bound to an RNA scaffold. First, a resin with immobilized L7Ae protein captured the incomplete RNP complexes and the free RNA scaffold. Next, another resin with an immobilized chemically modified RNA of a derivative of Box C/D motif, the binding partner of L7Ae, was used to capture free protein. The complete triangular RNP was successfully purified from the mixture by these two steps. Obviously, the purified triangular RNP displaying three protein-binding peptides exhibited an improved performance when compared with the unrefined product. Conceptually, this purification procedure should be applicable for the purification of a variety of complexes consisting of multiple components other than RNP.  相似文献   

17.
Among the large family of C/D methylation guide RNAs, the intron of euryarchaeal pre-tRNA(Trp) represents an outstanding specimen able to guide in cis, instead of in trans, two 2'-O-methylations in the pre-tRNA exons. Remarkably, both sites of methylation involve nucleotides within the bulge-helix-bulge (BHB) splicing motif, while the RNA-guided methylation and pre-tRNA splicing events depend on mutually exclusive RNA folding patterns. Using the three recombinant core proteins of archaeal C/D RNPs, we have analyzed in vitro RNP assembly of the pre-tRNA and tested its site-specific methylation activity. Recognition by L7Ae of hallmark K-turns at the C/D and C'/D' motifs appears as a crucial assembly step required for subsequent binding of a Nop5p-aFib heterodimer at each site. Unexpectedly, however, even without L7Ae but at a higher concentration of Nop5p-aFib, a substantially active RNP complex can still form, possibly reflecting the higher propensity of the cis-acting system to form guide RNA duplex(es) relative to classical trans- acting C/D RNA guides. Moreover, footprinting data of RNPs, consistent with Nop5p interacting with the non-canonical stem of the K-turn, suggest that binding of Nop5p-aFib to the pre-tRNA-L7Ae complex might direct transition from a splicing-competent structure to an RNA conformer displaying the guide RNA duplexes required for site-specific methylation.  相似文献   

18.
We have determined and refined a crystal structure of the initial assembly complex of archaeal box C/D sRNPs comprising the Archaeoglobus fulgidus (AF) L7Ae protein and a box C/D RNA. The box C/D RNA forms a classical kink-turn (K-turn) structure and the resulting protein-RNA complex serves as a distinct platform for recruitment of the fibrillarin-Nop5p complex. The cocrystal structure confirms previously proposed secondary structure of the box C/D RNA that includes a protruded U, a UU mismatch, and two sheared tandem GA base pairs. Detailed structural comparisons of the AF L7Ae-box C/D RNA complex with previously determined crystal structures of L7Ae homologs in complex with functionally distinct K-turn RNAs revealed a set of remarkably conserved principles in protein-RNA interactions. These analyses provide a structural basis for interpreting the functional roles of the box C/D sequences in directing specific assembly of box C/D sRNPs.  相似文献   

19.
The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C′/D′ RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C′/D′ RNP despite its inability to bind the K-loop, thus indicating the importance of protein–protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.  相似文献   

20.
The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR''s catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号