首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In higher eukaryotes, 14-3-3 proteins participate in numerous cellular processes, and carry out their function through a variety of different molecular mechanisms, including regulation of protein localization and enzyme activation. Here, it is shown that the two yeast 14-3-3 homologues, Bmh1p and Bmh2p, form a complex with neutral trehalase (Nth1p), an enzyme that is responsible for trehalose degradation and is required in a variety of stress conditions. In a purified in vitro system, either one of the two 14-3-3 yeast isoforms are necessary for complete activation of neutral trehalase (Nth1p) after phosphorylation by PKA. It is further demonstrated that Bmh1p and Bmh2p bind to the amino-terminal region of phosphorylated trehalase, thereby modulating its enzymatic activity. This work represents the first demonstration of enzyme activation mediated by 14-3-3 binding in yeast.  相似文献   

2.
PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser12, Ser66, and Ser109 and that PCTK3 activity significantly increased via phosphorylation at Ser12 by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3.  相似文献   

3.
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser323 being the highest affinity binding and is highly homologous to the Ser216 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser323 increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser323 phosphorylation is maintained into mitosis, but phosphorylation of Ser321 disrupts 14-3-3 binding to Ser323, mimicking the effect of inhibiting Ser323 phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser321 appears to have a role in stabilizing 14-3-3 binding to Ser323, and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser323. Ser321 is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser321 acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser323 and enhancing the dephosphorylation of Ser323 to block 14-3-3 binding to this site.  相似文献   

4.
Cytidine triphosphate synthetase (CTPS) is the rate-limiting enzyme in de novo CTP synthesis and is required for the formation of RNA, DNA, and phospholipids. This study determined the kinetic properties of the individual human CTPS isozymes (hCTPS1 and hCTPS2) and regulation through substrate concentration, oligomerization, and phosphorylation. Kinetic analysis demonstrated that both hCTPS1 and hCTPS2 were maximally active at physiological concentrations of ATP, GTP, and glutamine, whereas the Km and IC50 values for the substrate UTP and the product CTP, respectively, were close to their physiological concentrations, indicating that the intracellular concentrations of UTP and CTP may precisely regulate hCTPS activity. Low serum treatment increased hCTPS2 phosphorylation, and five probable phosphorylation sites were identified in the hCTPS2 C-terminal domain. Metabolic labeling of hCTPS2 with [32P]H3PO4 demonstrated that Ser568 and Ser571 were two major phosphorylation sites, and additional studies demonstrated that Ser568 was phosphorylated by casein kinase 1 both in vitro and in vivo. Interestingly, mutation of Ser568 (S568A) but not Ser571 significantly increased hCTPS2 activity, demonstrating that Ser568 is a major inhibitory phosphorylation site. The S568A mutation had a greater effect on the glutamine than ammonia-dependent activity, indicating that phosphorylation of this site may influence the glutaminase domain of hCTPS2. Deletion of the C-terminal regulatory domain of hCTPS1 also greatly increased the Vmax of this enzyme. In summary, this is the first study to characterize the kinetic properties of hCTPS1 and hCTPS2 and to identify Ser568 as a major site of CTPS2 regulation by phosphorylation.  相似文献   

5.
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.  相似文献   

6.
The Src homology 2 domain-containing inositol 5′-phosphatase 1 (SHIP1) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to phophatidylinositol 3,4-bisphosphate in hematopoietic cells to regulate multiple cell signaling pathways. SHIP1 can be phosphorylated by the cyclic AMP-dependent protein kinase (PKA), resulting in an increase in SHIP1 activity (Zhang, J., Walk, S. F., Ravichandran, K. S., and Garrison, J. C. (2009) J. Biol. Chem. 284, 20070–20078). Using a combination of approaches, we identified the serine residue regulating SHIP1 activity. After mass spectrometric identification of 17 serine and threonine residues on SHIP1 as being phosphorylated by PKA in vitro, studies with truncation mutants of SHIP1 narrowed the phosphorylation site to the catalytic region between residues 400 and 866. Of the two candidate phosphorylation sites located in this region (Ser440 and Ser774), only mutation of Ser440 to Ala abolished the ability of PKA to phosphorylate the purified, catalytic domain of SHIP1 (residues 401–866). Mutation of Ser440 to Ala in full-length SHIP1 abrogated the ability of PKA to increase the activity of SHIP1 in mammalian cells. Using flow cytometry, we found that the PKA activator, Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) blunted the phosphorylation of Akt downstream of B cell antigen receptor engagement in SHIP1-null DT40 B lymphocytes expressing native mouse SHIP1. The inhibitory effect of Sp-cAMPS was absent in cells expressing the S440A mutant of SHIP1. These results suggest that activation of SHIP1 by PKA via phosphorylation on Ser440 is an important regulatory event in hematopoietic cells.  相似文献   

7.
The stimulation of fluid and electrolyte secretion in salivary cells results in ionic changes that promote rapid increases in the activity of the Na,K-ATPase. In many cell systems, there are conflicting findings concerning the regulation of the phosphorylation of the Na,K-ATPase α subunit, which is the catalytic moiety. Initially, we investigated the phosphorylation sites on the α1 subunit in native rat parotid acinar cells using tandem mass spectrometry and identified two new phosphorylation sites (Ser222, Ser407), three sites (Ser217, Tyr260, Ser47) previously found from large scale proteomic screens, and two sites (Ser23, Ser16) known to be phosphorylated by PKC. Subsequently, we used phospho-specific antibodies to examine the regulation of phosphorylation on Ser23 and Ser16 and measured changes in ERK phosphorylation in parallel. The G-protein-coupled muscarinic receptor mimetic carbachol, the phorbol ester phorbol 12-myristate 13-acetate, the Ca2+ ionophore ionomycin, and the serine/threonine phosphatase inhibitor calyculin A increased Ser23 α1 phosphorylation. Inhibition of classical PKC proteins blocked carbachol-stimulated Ser23 α1 subunit phosphorylation but not ERK phosphorylation, which was blocked by an inhibitor of novel PKC proteins. The carbachol-initiated phosphorylation of Ser23 α1 subunit was not modified by ERK or PKA activity. The Na,K-ATPase inhibitor ouabain reduced and enhanced the carbachol-promoted phosphorylation of Ser23 and Ser16, respectively, the latter because ouabain itself increased Ser16 phosphorylation; thus, both sites display conformational-dependent phosphorylation changes. Ouabain-initiated phosphorylation of Ser16 α1 was not blocked by PKC inhibitors, unlike carbachol- or phorbol 12-myristate 13-acetate-initiated phosphorylations, suggesting that this site was also a substrate for a kinase other than PKC.  相似文献   

8.
Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response.  相似文献   

9.
We previously demonstrated that calmodulin-dependent protein kinase IIα (CaM-KIIα) phosphorylates nNOS at Ser847 in the hippocampus after forebrain ischemia; this phosphorylation attenuates NOS activity and might contribute to resistance to post-ischemic damage. We also revealed that cyclic AMP-dependent protein kinase (PKA) could phosphorylate nNOS at Ser1412in vitro. In this study, we focused on chronological and topographical changes in the phosphorylation of nNOS at Ser1412 after rat forebrain ischemia. The hippocampus and adjacent cortex were collected at different times, up to 24 h, after 15 min of forebrain ischemia. NOS was partially purified from crude samples using ADP agarose gel. Neuronal NOS, phosphorylated (p)-nNOS at Ser1412, PKA, and p-PKA at Thr197 were studied in the rat hippocampus and cortex using Western blot analysis and immunohistochemistry. Western blot analysis revealed that p-nNOS at Ser1412 significantly increased between 1 and 6 h after reperfusion in the hippocampus, but not in the cortex. PKA was cosedimented with nNOS by ADP agarose gel. Immunohistochemistry revealed that phosphorylation of nNOS at Ser1412 and PKA at Thr197 occurred in the subgranular layer of the dentate gyrus. Forebrain ischemia might thereby induce temporary activation of PKA at Thr197, which then phosphorylates nNOS at Ser1412 in the subgranular layer of the dentate gyrus.  相似文献   

10.
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect.  相似文献   

11.

Background

Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism.

Methods

To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation.

Results

Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure.

Conclusions

The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation.

General significance

The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.  相似文献   

12.
In vivo phosphorylation sites of the tobacco calcium-dependent protein kinases NtCDPK2 and NtCDPK3 were determined in response to biotic or abiotic stress. Stress-inducible phosphorylation was exclusively located in the variable N termini, where both kinases were phosphorylated differentially despite 91% overall sequence identity. In NtCDPK2, serine 40 and threonine 65 were phosphorylated within 2 min after stress. Whereas Thr65 is subjected to intra-molecular in vivo autophosphorylation, Ser40 represents a target for a regulatory upstream protein kinase, and correct NtCDPK2 membrane localization is required for Ser40 phosphorylation. NtCDPK3 is phosphorylated at least at two sites in the N terminus by upstream kinase(s) upon stress stimulus, first at Ser54, a site not present in NtCDPK2, and also at a second undetermined site not identical to Ser40. Domain swap experiments established that differential phosphorylation of both kinases is exclusively determined by the respective N termini. A cell death-inducing response was only observed upon expression of a truncated variant lacking the junction and calcium-binding domain of NtCDPK2 (VK2). This response required protein kinase activity and was reduced when subcellular membrane localization was disturbed by a mutation in the myristoylation and palmitoylation site. Our data indicate that CDPKs are integrated in stress-dependent protein kinase signaling cascades, and regulation of CDPK function in response to in vivo stimulation is dependent on its membrane localization.  相似文献   

13.
The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser696/Thr706 and cluster 2, Ser855/Ser859/Ser863/Ser877) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites. Here we focus primarily although not exclusively on raptor Ser863 phosphorylation. We report that insulin promotes mTORC1-associated phosphorylation of raptor Ser863 via the canonical PI3K/TSC/Rheb pathway in a rapamycin-sensitive manner. mTORC1 activation by other stimuli (e.g. amino acids, epidermal growth factor/MAPK signaling, and cellular energy) also promote raptor Ser863 phosphorylation. Rheb overexpression increases phosphorylation on raptor Ser863 as well as on the five other identified sites (e.g. Ser859, Ser855, Ser877, Ser696, and Thr706). Strikingly, raptor Ser863 phosphorylation is absolutely required for raptor Ser859 and Ser855 phosphorylation. These data suggest that mTORC1 activation leads to raptor multisite phosphorylation and that raptor Ser863 phosphorylation functions as a master biochemical switch that modulates hierarchical raptor phosphorylation (e.g. on Ser859 and Ser855). Importantly, mTORC1 containing phosphorylation site-defective raptor exhibits reduced in vitro kinase activity toward the substrate 4EBP1, with a multisite raptor 6A mutant more strongly defective that single-site raptor S863A. Taken together, these data suggest that complex raptor phosphorylation functions as a biochemical rheostat that modulates mTORC1 signaling in accordance with environmental cues.  相似文献   

14.
The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser779 in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser779 in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser779 was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCϵ can phosphorylate Ser779 in vitro, whereas overexpression of PKCϵ results in constitutive Ser779 phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCϵ reduces both growth factor-induced Ser779 phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser779, can quantitatively control Ras/MAPK signaling to promote specific cellular responses.  相似文献   

15.
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser2152 site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser2152. These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.  相似文献   

16.
Impairments of cellular plasticity appear to underlie the pathophysiology of major depression. Recently, elevated levels of phosphorylated AMPA receptor were implicated in the antidepressant effect of various drugs. Here, we investigated the effects of an antidepressant, Tianeptine, on synaptic function and GluA1 phosphorylation using murine hippocampal slices and in vivo single-unit recordings. Tianeptine, but not imipramine, increased AMPA receptor-mediated neuronal responses both in vitro and in vivo, in a staurosporine-sensitive manner. Paired-pulse ratio was unaltered by Tianeptine, suggesting a postsynaptic site of action. Tianeptine, 10 μM, enhanced the GluA1-dependent initial phase of LTP, whereas 100 μM impaired the latter phases, indicating a critical role of GluA1 subunit phosphorylation in the excitation. Tianeptine rapidly increased the phosphorylation level of Ser831-GluA1 and Ser845-GluA1. Using H-89 and KN-93, we show that the activation of both PKA and CaMKII is critical in the effect of Tianeptine on AMPA responses. Moreover, the phosphorylation states of Ser217/221-MEK and Thr183/Tyr185-p42MAPK were increased by Tianeptine and specific kinase blockers of the MAPK pathways (PD 98095, SB 203580 and SP600125) prevented the effects of Tianeptine. Overall these data suggest that Tianeptine potentiates several signaling cascades associated with synaptic plasticity and provide further evidence that a major mechanism of action for Tianeptine is to act as an enhancer of glutamate neurotransmission via AMPA receptors.  相似文献   

17.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   

18.
19.
PKA signaling is important for the post-translational modification of proteins, especially those in cardiomyocytes involved in cardiac excitation-contraction coupling. PKA activity is spatially and temporally regulated through compartmentalization by protein kinase A anchoring proteins. Cypher/ZASP, a member of PDZ-LIM domain protein family, is a cytoskeletal protein that forms multiprotein complexes at sarcomeric Z-lines. It has been demonstrated that Cypher/ZASP plays a pivotal structural role in the structural integrity of sarcomeres, and several of its mutations are associated with myopathies including dilated cardiomyopathy. Here we show that Cypher/ZASP, interacting specifically with the type II regulatory subunit RIIα of PKA, acted as a typical protein kinase A anchoring protein in cardiomyocytes. In addition, we show that Cypher/ZASP itself was phosphorylated at Ser265 and Ser296 by PKA. Furthermore, the PDZ domain of Cypher/ZASP interacted with the L-type calcium channel through its C-terminal PDZ binding motif. Expression of Cypher/ZASP facilitated PKA-mediated phosphorylation of the L-type calcium channel in vitro. Additionally, the phosphorylation of the L-type calcium channel at Ser1928 induced by isoproterenol was impaired in neonatal Cypher/ZASP-null cardiomyocytes. Moreover, Cypher/ZASP interacted with the Ser/Thr phosphatase calcineurin, which is a phosphatase for the L-type calcium channel. Taken together, our data strongly suggest that Cypher/ZASP not only plays a structural role for the sarcomeric integrity, but is also an important sarcomeric signaling scaffold in regulating the phosphorylation of channels or contractile proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号