首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Powdery mildew pathogens are biotrophic fungi that infect large number of plant species. EDR1 (ENHANCED DISEASE RESISTANCE 1) is a negative regulator of plant disease resistance, and loss-of-function in the EDR1 gene confers enhanced disease resistance to powdery mildew pathogen Golovinomyces cichoracearum. In an edr1 suppressor screen, we recently found that a mutation in HPR1, a component of the THO/TREX complex, suppresses edr1-mediated disease resistance, however the hpr1 mutation enhances the ethylene-induced senescence in edr1. The hpr1 single mutant displays enhanced susceptibility, indicating that HPR1 is involved in plant defense responses.1 THO/TREX is a conserved protein complex that functions in pre-mRNA processing and mRNA export. Several components of THO/TREX complex in Arabidopsis have been identified. By searching Arabidopsis database, we found that Arabidopsis (Columbia-0) has two copies of UAP56, another component of the THO/TREX complex, and the UAP56 proteins are highly conserved. Similar to human UAP56 protein, Arabidopsis UAP56 also localizes to the nucleus, showing a pattern similar to the splicing speckles. Further characterization of the components of THO/TREX in Arabidopsis will provide new insights into the role of THO/TREX in defense responses in plants.  相似文献   

10.
11.
12.
Genomic instability and a predisposition to cancer are hallmarks of Bloom syndrome, an autosomal recessive disease arising from mutations in the BLM gene. BLM is a RecQ helicase component of the BLM-Topo III α-RMI1-RMI2 (BTR) complex, which maintains chromosome stability at the spindle assembly checkpoint (SAC). Other members of the BTR complex include Topo IIIa, RMI1, and RMI2. All members of the BTR complex are essential for maintaining the stable genome. Interestingly, the BTR complex is posttranslationally modified upon SAC activation during mitosis, but its significance remains unknown. In this study, we show that two proteins that interact with BLM, RMI1 and RMI2, are phosphorylated upon SAC activation, and, like BLM, RMI1, and RMI2, are phosphorylated in an MPS1-dependent manner. An S112A mutant of RMI2 localized normally in cells and was found in SAC-induced coimmunoprecipitations of the BTR complex. However, in RMI2-depleted cells, an S112A mutant disrupted the mitotic arrest upon SAC activation. The failure of cells to maintain mitotic arrest, due to lack of phosphorylation at Ser-112, results in high genomic instability characterized by micronuclei, multiple nuclei, and a wide distribution of aberrantly segregating chromosomes. We found that the S112A mutant of RMI2 showed defects in redistribution between the nucleoplasm and nuclear matrix. The phosphorylation at Ser-112 of RMI2 is independent of BLM and is not required for the stability of the BTR complex, BLM focus formation, and chromatin targeting in response to replication stress. Overall, this study suggests that the phosphorylation of the BTR complex is essential to maintain a stable genome.  相似文献   

13.
Augmin is a protein complex that binds to spindle microtubules (MTs), recruits the potent MT nucleator, γ-tubulin, and thereby promotes the centrosome-independent MT generation within mitotic and meiotic spindles. Augmin is essential for acentrosomal spindle assembly, which is commonly observed during mitosis in plants and meiosis in female animals. In many animal somatic cells that possess centrosomes, the centrosome- and augmin-dependent mechanisms work cooperatively for efficient spindle assembly and cytokinesis. Yeasts have lost the augmin genes during evolution. It is hypothesized that their robust MT nucleation from the spindle pole body (SPB), the centrosome-equivalent structure in fungi, compensates for the lack of augmin. Intriguingly, however, a gene homologous to an augmin subunit (Aug6/AUGF) has been found in the genome of filamentous fungi, which has the SPB as a robust MT nucleation centre. Here, we aimed to clarify if the augmin complex is present in filamentous fungi and to identify its role in mitosis. By analysing the Aug6-like gene in the filamentous fungus Aspergillus nidulans, we found that it forms a large complex with several other proteins that share weak but significant homology to known augmin subunits. In A. nidulans, augmin was enriched at the SPB and also associated with spindle MTs during mitosis. However, the augmin gene disruptants did not exhibit growth defects under normal, checkpoint-deficient, or MT-destabilised conditions. Moreover, we obtained no evidence that A. nidulans augmin plays a role in γ-tubulin recruitment or in mitotic cell division. Our study uncovered the conservation of the augmin complex in the fungal species, and further suggests that augmin has several functions, besides mitotic spindle MT nucleation, that are yet to be identified.  相似文献   

14.
15.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

16.
17.
18.
19.
20.
Mitosis must faithfully divide the genome such that each progeny inherits the same genetic material. DNA condensation is crucial in ensuring that chromosomes are correctly attached to the mitotic spindle for segregation, preventing DNA breaks or constrictions from the contractile ring. Histones form an octameric complex of basic proteins important in regulating DNA organization and accessibility. Histone post-translational modifications are altered during mitosis, although the roles of these post-translational modifications remain poorly characterized. Here, we report that N-acetylglucosamine (O-GlcNAc) transferase (OGT), the enzyme catalyzing the addition of O-GlcNAc moieties to nuclear and cytoplasmic proteins at serine and threonine residues, regulates some aspects of mitotic chromatin dynamics. OGT protein amounts decrease during M phase. Modest overexpression of OGT alters mitotic histone post-translational modifications at Lys-9, Ser-10, Arg-17, and Lys-27 of histone H3. Overexpression of OGT also prevents mitotic phosphorylation of coactivator-associated arginine methyltransferase 1 (CARM1) and prevents its correct cellular localization during mitosis. Moreover, OGT overexpression results in an increase in abnormal chromosomal bridge formation. Together, these results show that regulating the amount of OGT during mitosis is important in ensuring correct chromosomal segregation during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号