首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane proteins of pathogenic spirochetes   总被引:10,自引:0,他引:10  
  相似文献   

2.
As a structural class, tight turns can control molecular recognition, enzymatic activity, and nucleation of folding. They have been extensively characterized in soluble proteins but have not been characterized in outer membrane proteins (OMPs), where they also support critical functions. We clustered the 4 to 6 residue tight turns of 110 OMPs to characterize the phi/psi angles, sequence, and hydrogen bonding of these structures. We find significant differences between reports of soluble protein tight turns and OMP tight turns. Since OMP strands are less twisted than soluble strands, they favor different turn structures types. Moreover, the membrane localization of OMPs yields different sequence hallmarks for their tight turns relative to soluble protein turns. We also characterize the differences in phi/psi angles, sequence, and hydrogen bonding between OMP extracellular loops and OMP periplasmic turns. As previously noted, the extracellular loops tend to be much longer than the periplasmic turns. We find that this difference in length is due to the broader distribution of lengths of the extracellular loops not a large difference in the median length. Extracellular loops also tend to have more charged residues as predicted by the charge-out rule. Finally, in all OMP tight turns, hydrogen bonding between the side chain and backbone 2 to 4 residues away from that side chain plays an important role. These bonds preferentially use an Asp, Asn, Ser, or Thr residue in a beta or pro phi/psi conformation. We anticipate that this study will be applicable to future design and structure prediction of OMPs.  相似文献   

3.
嗜水气单胞菌外膜蛋白基因ompTS的高效表达及其免疫原性   总被引:6,自引:0,他引:6  
根据嗜水气单胞菌外膜蛋白基因ompTS的核苷酸序列设计引物,运用聚合酶链式反应(PCR)扩增出与预期大小相符的基因片段。将此基因片段克隆至质粒pRSET A的BamHI和EcoRI位点,构建重组质粒,转化大肠杆菌BL21(DE3),经IPTG诱导获得高效表达,SDS-PAGE蛋白电泳表明在39.9kD处出现超强特异带,占总蛋白的51%。以Ni-NTA-Conjugate抗体进行Western blot分析证明该39.9kD的蛋白为所表达的融合蛋白。纯化融合蛋白注射雄性新西兰大白兔可诱导产生特异抗体。ELISA和Western blot检测结果显示,该抗体与表达的融合蛋白和从嗜水气单胞菌中提取的36.9kD外膜蛋白均呈阳性反应,表明所表达的融合蛋白仍保持原有外膜蛋白的免疫原性,为此融合蛋白作为 疫苗的候选成份提供理论基础。  相似文献   

4.
Abstract The ompK gene of Vibrio parahaemolyticus 1010 (RIMD 2210001) encoding an outer membrane protein (OMP), OmpK, which serves as the receptor for a broad-host-range vibriophage, KVP40, was cloned and sequenced. The gene consisted of 789 nucleotides encoding 263 amino acids. Since the first 20 amino acids most likely constitute the signal peptide, mature OmpK would consist of 243 amino acids with a calculated molecular mass of 27458 Da. Sequence comparisons indicate that OmpK is unique among Vibrio OMPs so far sequenced, but may be distantly related to Tsx of enteric bacteria and is homologous to an Aeromonas hydrophila OMP, protein IV.  相似文献   

5.
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.  相似文献   

6.
The outer membrane is the first line of contact between Gram-negative bacteria and their external environment. Embedded in the outer membrane are integral outer membrane proteins (OMPs) that perform a diverse range of tasks. OMPs are synthesized in the cytoplasm and are translocated across the inner membrane and probably diffuse through the periplasm before they are inserted into the outer membrane in a folded and biologically active form. Passage through the periplasm presents a number of challenges, due to the hydrophobic nature of the OMPs and the choice of membranes into which they can insert. Recently, a number of periplasmic proteins and one OMP have been shown to play a role in OMP biogenesis. In this review, we describe what is known about these folding factors and how they function in a biological context. In particular, we focus on how they interact with the OMPs at the molecular level and present a comprehensive overview of data relating to a possible effect on OMP folding yield and kinetics. Furthermore, we discuss the role of lipo-chaperones, i.e. lipopolysaccharide and phospholipids, in OMP folding. Important advances have clearly been made in the field, but much work remains to be done, particularly in terms of describing the biophysical basis for the chaperone-OMP interactions which so intricately regulate OMP biogenesis.  相似文献   

7.
The Omp85 family of proteins has been found in all Gram-negative bacteria and even several eukaryotic organisms. The previously uncharacterized Escherichia coli member of this family is YaeT. The results of this study, consistent with previous Omp85 studies, show that the yaeT gene encodes for an essential cellular function. Direct examinations of the outer membrane fraction and protein assembly revealed that cells depleted for YaeT are severely defective in the biogenesis of outer membrane proteins (OMPs). Interestingly, assemblies of the two distinct groups of OMPs that follow either SurA- and lipopolysaccharide-dependent (OmpF/C) or -independent (TolC) folding pathways were affected, suggesting that YaeT may act as a general OMP assembly factor. Depletion of cells for YaeT led to the accumulation of OMPs in the fraction enriched for periplasm, thus indicating that YaeT facilitates the insertion of soluble assembly intermediates from the periplasm to the outer membrane. Our data suggest that YaeT's role in the assembly of OMPs is not mediated through a role in lipid biogenesis, as debated for Omp85 in Neisseria, thus advocating a conserved OMP assembly function of Omp85 homologues.  相似文献   

8.
The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs) in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom “tentacle” domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually “climb” into the Skp cavity in the absence of an external energy supply.  相似文献   

9.
Although many typical outer-membrane proteins (OMPs) have been well characterized, the biological functions of many OMPs remain largely elusive. In this study, we successfully constructed 29 OMP knockout strains in the pathogen Aeromonas hydrophila, which account for about 50% of all predicted OMPs in this bacterial species. We then further validated the antibiotics' susceptibility characteristics against 20 antimicrobial reagents in these mutants considering several phenotypes. Our results showed that a total of 22 OMP mutants affected the susceptibility to at least one antibiotic. The deletion of some OMPs, such as ΔlamB and ΔbamA, revealed very important roles in the resistance to certain antibiotics. However, not a single OMP mutant presented a constant behaviour to all of the tested antibiotics, suggesting the existence of a complex intercellular regulation mechanism and a protein–protein interaction network underlying the OMP homeostasis in the presence of antibiotics. Meanwhile, some OMP mutants also affected biofilm formation, ECPase and haemolytic activity, and carbon resources utilization. This report demonstrates the biological functions of OMPs on a large scale and most of results have not been reported in A. hydrophila.  相似文献   

10.
Bdellovibrio bacteriovorus is a predatory bacterium that is capable of invading a number of gram-negative bacteria. The life cycle of this predator can be divided into a nonreproductive phase outside the prey bacteria and a multiplication phase in their periplasm. It was suggested that during the reproduction phase, B. bacteriovorus reutilizes unmodified components of the prey's cell wall. We therefore examined the outer membranes of B. bacteriovorus strains HD100 (DSM 50701) and HD114 (DSM 50705) by using Escherichia coli, Yersinia enterocolitica, and Pseudomonas putida as prey organisms. The combined sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses revealed novel and innate major outer membrane proteins (OMPs) of B. bacteriovorus strains. An incorporation of prey-derived proteins into the cell wall of B. bacteriovorus was not observed. The corresponding genes of the B. bacteriovorus strains were elucidated by a reverse-genetics approach, and a leader peptide was deduced from the gene sequence and confirmed by Edman degradation. The host-independent mutant strain B. bacteriovorus HI100 (DSM 12732) growing in the absence of prey organisms possesses an OMP similar to the major OMPs of the host-dependent strains. The similarity of the primary structure of the OMPs produced by the three Bdellovibrio strains is between 67 and 89%. The leader peptides of all OMPs have a length of 20 amino acids and are highly conserved. The molecular sizes of the mature proteins range from 34.9 to 37.6 kDa. Secondary-structure predictions indicate preferential alpha-helices and little beta-barrel structures.  相似文献   

11.
《Biophysical journal》2021,120(23):5295-5308
The outer membrane of Gram-negative bacteria presents a robust physicochemical barrier protecting the cell from both the natural environment and acting as the first line of defense against antimicrobial materials. The proteins situated within the outer membrane are responsible for a range of biological functions including controlling influx and efflux. These outer membrane proteins (OMPs) are ultimately inserted and folded within the membrane by the β-barrel assembly machine (Bam) complex. The precise mechanism by which the Bam complex folds and inserts OMPs remains unclear. Here, we have developed a platform for investigating Bam-mediated OMP insertion. By derivatizing a gold surface with a copper-chelating self-assembled monolayer, we were able to assemble a planar system containing the complete Bam complex reconstituted within a phospholipid bilayer. Structural characterization of this interfacial protein-tethered bilayer by polarized neutron reflectometry revealed distinct regions consistent with known high-resolution models of the Bam complex. Additionally, by monitoring changes of mass associated with OMP insertion by quartz crystal microbalance with dissipation monitoring, we were able to demonstrate the functionality of this system by inserting two diverse OMPs within the membrane, pertactin, and OmpT. This platform has promising application in investigating the mechanism of Bam-mediated OMP insertion, in addition to OMP function and activity within a phospholipid bilayer environment.  相似文献   

12.
The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA and Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.  相似文献   

13.
GNA2091 of Neisseria meningitidis is a lipoprotein of unknown function that is included in the novel 4CMenB vaccine. Here, we investigated the biological function and the subcellular localization of the protein. We demonstrate that GNA2091 functions in the assembly of outer membrane proteins (OMPs) because its absence resulted in the accumulation of misassembled OMPs. Cell fractionation and protease accessibility experiments showed that the protein is localized at the periplasmic side of the outer membrane. Pulldown experiments revealed that it is not stably associated with the β-barrel assembly machinery, the previously identified complex for OMP assembly. Thus, GNA2091 constitutes a novel outer membrane-based lipoprotein required for OMP assembly. Furthermore, its location at the inner side of the outer membrane indicates that protective immunity elicited by this antigen cannot be due to bactericidal or opsonic activity of antibodies.  相似文献   

14.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

15.
AIMS: To differentiate between outer membrane proteins (OMPs) from six Salmonellaenterica serotypes using a Fourier transform infrared (FTIR) spectroscopy method and chemometrics. METHODS AND RESULTS: The OMPs from Salmonella serotypes (Typhimurium, Enteritidis, Thomasville, Hadar, Seftenberg and Brandenburg) were isolated using a sarcosyl extraction method. OMP profiles on SDS-PAGE exhibited two or three bands between 48 and 54 kDa. Spectra of 10 microl of OMP preparations (5 mg ml(-1)) dried on a gold reflective slide were collected using 128 scans at 4 cm(-1) resolution and units of log (1/R) and analyzed using canonical variate analysis (CVA) and linear discriminant analysis (LDA). The CVA of Salmonella OMP spectra in the 1800-1500 cm(-1) region separated the serotypes and LDA provided a 100% correct classification. CONCLUSIONS: The use of a FTIR method combined with chemometrics provided better differentiation of Salmonella OMPs than the OMP pattern analysis by SDS-PAGE. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that spectra of OMP extracts from Salmonella serotypes can be used for 100% correct classification of the serotypes studied.  相似文献   

16.
Outer-membrane proteins (OMPs) from Haemophilus influenzae type b (strain Eagan), grown both in vitro (broth) and in vivo (rat intra-peritoneal), were separated by SDS-PAGE. The major OMPs were present in both growth conditions although the amounts of OMP a and OMP d were reduced in rat-grown organisms. There were strong additional bands in in-vivo-grown organisms at 51 and 92 kDa. Antiserum was raised in rabbits against in-vivo-grown bacteria, and absorbed with lysates of in-vitro-grown bacteria. This serum was used in Western blot analysis of OMPs from in-vitro- and in-vivo-grown cells to identify immunogenic proteins present in infection. These infection-associated OMPs had apparent molecular masses of 43 kDa, 48 kDa, 81 kDa and greater than 200 kDa. Bands of reactivity, of the same molecular mass as some of these, were found on immunoblots when rat and human convalescent sera were used as the source of primary antibody. In particular, a band of 81 kDa was recognized by pooled rat and three human convalescent sera.  相似文献   

17.
β‐barrel‐shaped outer membrane proteins (OMPs) ensure regulated exchange of molecules across the cell‐wall of Gram‐negative bacteria. They are synthesized in the cytoplasm and translocated across the plasma membrane via the SEC translocon. In the periplasm, several proteins participate in the transfer of OMPs to the outer membrane‐localized complex catalyzing their insertion. This process has been described in detail for proteobacteria and some molecular components are conserved in cyanobacteria. For example, Omp85 proteins that catalyze the insertion of OMPs into the outer membrane exist in cyanobacteria as well. In turn, SurA and Skp involved in OMP transfer from plasma membrane to Omp85 in E. coli are likely replaced by Tic22 in cyanobacteria. We describe that anaTic22 functions as periplasmic holdase for OMPs in Anabaena sp. PCC 7120 and provide evidence for the process of substrate delivery to anaOmp85. AnaTic22 binds to the plasma membrane with specificity for phosphatidylglycerol and monogalactosyldiacylglycerol. Substrate recognition induces membrane dissociation and interaction with the N‐terminal POTRA domain of Omp85. This leads to substrate release by the interaction with a proline‐rich domain and the first POTRA domain of Omp85. The order of events during OMP transfer from plasma membrane to Omp85 in cyanobacteria is discussed.  相似文献   

18.
《Journal of molecular biology》2019,431(6):1267-1283
SurA is a conserved ATP-independent periplasmic chaperone involved in the biogenesis of outer-membrane proteins (OMPs). Escherichia coli SurA has a core domain and two peptidylprolyl isomerase (PPIase) domains, the role(s) of which remain unresolved. Here we show that while SurA homologues in early proteobacteria typically contain one or no PPIase domains, the presence of two PPIase domains is common in SurA in later proteobacteria, implying an evolutionary advantage for this domain architecture. Bioinformatics analysis of > 350,000 OMP sequences showed that their length, hydrophobicity and aggregation propensity are similar across the proteobacterial classes, ruling out a simple correlation between SurA domain architecture and these properties of OMP sequences. To investigate the role of the PPIase domains in SurA activity, we deleted one or both PPIase domains from E. coli SurA and investigated the ability of the resulting proteins to bind and prevent the aggregation of tOmpA (19 kDa) and OmpT (33 kDa). The results show that wild-type SurA inhibits the aggregation of both OMPs, as do the cytoplasmic OMP chaperones trigger factor and SecB. However, while the ability of SurA to bind and prevent tOmpA aggregation does not depend on its PPIase domains, deletion of even a single PPIase domain ablates the ability of SurA to prevent OmpT aggregation. The results demonstrate that the core domain of SurA endows its generic chaperone ability, while the presence of PPIase domains enhances its chaperone activity for specific OMPs, suggesting one reason for the conservation of multiple PPIase domains in SurA in proteobacteria.  相似文献   

19.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

20.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号